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1 Abstract

In this thesis we study different approaches to bound the supremum of ygl f(2)|, where f
is a cusp form of arbitrary real weight k with respect to a finite index subgroup of SLy(Z).
The techniques involve bounding Fourier coefficients of Poincaré series and bounds on the
Bergman kernel. The results are completely uniform in every aspect. We further specialize
to the case of Hecke eigenforms of half-integral weight and improve upon the previously given
convexity bounds.



2 Introduction

Supremum norms of Maass and holomorphic cusp forms have been studied in various ways.
In the case of Maass forms, Iwaniec-Sarnak [[S95] obtained the first non-trivial result in
the eigenvalue aspect. They have been further studied in the level aspect by Blomer-
Holowinsky [BH10], Templier [Tem10] and Harcos-Templier [HT12], [HT13] to name a few.
Templier was able to unify both best results in a hybrid bound [Tem11].

In the case of holomorphic forms, results in the weight aspect have been obtained by Xia
[Xia07], Rudnick [Rud05]|, Blomer-Khan-Young [BKY13| and Friedman-Jorgenson-Kramer
[FJK13]. In the level aspect non-trivial results have been given by Blomer-Holowinsky [BH10]
and in the case of half integral weight also by Kiral [Kir13].

The question about supremum norms are related to subconvexity of L-functions, the theory
of quantum chaos and the mass equidistribution conjecture, which makes it an interesting
topic to study.

In this work we study the supremum norm problem for holomorphic cusp forms in a variety
of cases, where no non-trivial bounds have been previously written down. In particular
we generalize the results obtained in [FJK13| in absolute uniformity to modular forms of
arbitrary real weight with respect to a finite index subgroup of SLy(Z). In the second part of
the thesis we specialize to half-integral weight newforms of level 4, breaking the previously
given convexity bounds.

To motivate some of our results in Section (3] we recall a result of Rudnick [Rud05], who
proved that for a fixed compact subset K of the upper-half plane H and a cusp form f of
weight k € 27 for the full modular group SLy(Z) we have sup..x 42 |f(2)| <x k2 || f]]2. This
result is essentially the best possible as there is a family of modular forms, which admit their
supremum in a compact set and satisfy sup,cx yE|f(2)] > k27| ]|

We generalize this result of Rudnick uniformly to arbitrary real weight k, finite index sub-
group I' and automorphy factor v as follows (Theorem [3.23):

su}gy%mz)r < [SLa(Z) : T)7 - k2| f]|a.
zEe

If we do not restrict ourselves to compact sets the situation is different. In this case we are
able to show (Theorem [3.24)):

i SL,(7) : T2 ki
supyt|f(2)] < O, by - D@ TR
2€H min k2

T7ESL2(Z)

where C(T', k) is an explicit small constant and the x, € (0, 1] are the cusp parametersﬂ
C(T, k) can be taken to be 1 uniformly for all I' such that [SLy(Z) : I'] < k'=%. This result
follows from our generalization of a result by Friedman-Jorgenson-Kramer [FJK13|. They

In the classical setting I a congruence subgroup and automorphy factor j*, where k is an even integer,
all cusp parameters are 1.



proved for k € 2Z: sup,e y; y*|f;(2)]* < [SLo(Z) : T - k2, where {f;} is an orthonormal
basis. If we assume once again [SLy(Z) : T] < k'~ and k large enough our generalization
can be stated as follows:

[SLy(Z) : Tk2
sup >yt f;(2)° = i
zeH J e81a(2) T

where k is arbitrary real. We also prove more refined bounds on the quantity > ; yg 1fi(2)];
we refer the reader to Section [3] for details.

So far these results have been without any assumptions on f being eigenforms. For Hecke
eigenforms of integral weight one can do better as has been shown by Xia [Xia07]. For f a
Hecke eigenform on full modular group SLy(Z) one has:

1_, k 1y,
k5| fll2 < supy?|f(2)] < K1) o
zE

This begs the question: can one extend Xia’s bound to the case of eigenforms of non-integral
weight? The theory of Hecke operators of real weight has its difficulties, but it has been
well established in the case of half-integral weight. In Section 4] we restrict ourselves to the
simplest case of half-integral weight cuspidal eigenforms of level 4 lying in the Kohnen plus
space ST(To(4), k, j&). We adopt Xia’s method, and succeed in getting the same upper
bound as him if we assume the Lindel6f hypothesis (see Theorem [4.8)). Unconditionally,
using subconvexity results of [MV10] we are able to show (Theorem |4.9))

k 1
sungIf(Z)l < Kz ff2-
ze

We also obtain some results on lower bounds for the sup-norm (Proposition [4.10, Theorem
113).

Some interesting questions that arise are:
e What results can one achieve by this method for half-integral newforms of level 4 N7

e [s it possible to give hybrid bounds on the sup-norm that are subconvex in the weight
aspect as well as the level aspect?

To answer these it may also be of use to consider a more general kernel other than the
Bergman kernel in order to amplify the contribution of the Hecke eigenform we are interested
in and potentially bypass the exponent %



3 Modular forms of real weight

In this chapter we follow the notion of modular forms of real weight as defined in [Ran77]
and adopt some of the notation used. If not stated otherwise, proofs of claims can be found
in [Ran77].

3.1 Definitions and notation

Throughout this thesis we assume that I' is a finite index subgroup of SLy(Z) with —I € T’
and denote T' := T'/{£]}. For w € C and k € R we let w* := exp(k - log(w)), where
log(w) = log(|w|) +iarg(w) with —m < arg(w) < . The symbol < denotes the Vinogradov
symbol and f(z) <a,p,c g(x) means |f(r)] < Kg(z), where K depends at most on A, B
and C. Further the symbol f(x) =<4 g(z) is equivalent to f(x) <4 g(z) and g(z) <4 f(x).

As usual the action of SLy(Z) on H = {z € C|Im z > 0} is given by M&bius transformations:

. Z_az+b _fa b
7 _/y _CZ—f—d’ - d

) € SLy(Z),Vz € H.

We extend the same action to the set of cusps Q = P*(Q) = QLI{oo}. The topology on HLIQ
is given in the following way: On H it is the usual Euclidean topology and a neighborhood
basis of oo is given by the sets coU {z € H|Im z > M}, where M € RT. Atacusp( € Qa
neighborhood basis is given by choosing a 7 € SLy(Z), such that 7¢( = oo and pulling back
the neighborhood basis of co. The action of SLy(Z) on H LI Q is then once again properly

b) € SLy(R) we define

discontinuous. For v = (Z J

Jj(v,2) = (cz +d),Vz € H.

o)

Definition 3.1. A function v : I' x H — C is called an automorphy factor of weight k on I’
if the following conditions are satisfied:

For further convenience we define

1. Vy eI :v(y,-) is a holomorphic function on H,
2. Vy e Vz e H: |v(v,2)| = [5(7, 2)[%,

3. Vy,rel'\Vze H:v(ry,2) =v(r,v2)v(v, 2),
4. Vyel,zeH:v(—y,2)=v(y,2).

Remark 3.1. For k € 27, j* defines an automorphy factor of weight k on SLy(Z).



Corresponding to v we can define a multiplier system v : I' — S of weight k on T as:

ol ) Y2
v(y) =v(y,2) : o5

Vyel,Vz € H.

We remark that the right hand side is indeed independent of z as it is a bounded holomorphic
function on H and thus constant. It satisfies the relation:

v(ry) = o(r,y)v(T)v(y), V1,7 €T,

where

(1 72)55(v, )"

jry 2k
If v is an automorphy factor of weight £ on I" and 7 € SLy(Z) we can define a conjugate
automorphy factor 7 of weight k on I'" := 77!I'7 in the following way:

o(r,7) =

v(y,72)j(1, 2)"

Jr T iyrak

VT (17T, 2) = Vyel,Vz e H.

Remark 3.2. If 7 € I, then v™ = v, but I'" = I' does not necessarily imply v™ = v, if 7 ¢ T".

Definition 3.2. A meromorphic function f on H is called an unrestricted modular function
with respect to I', k, v (or v) if it satisfies

f(v2) =v(y,2)f(z) = v(1)j(7,2)" f(2), VyeT,zeH.

If f is a meromorphic function on H, we define the v-transform f|.y of f as:

(fli)(2) = (7. 2) " f(72).

In order to define modular functions and forms, we need some conditions at the cusps.
For this matter we need to introduce two quantities n, and k,. Let ( = 700 € Q, where
7 € SLy(Z), be a cusp. Then the stabilizer I'c of ¢ is generated by 7U" 77!, where

()

n, is called the width of the cusp 7oo. In the classical setting of I' = I'g(/V) we have that all
cusp widths n, are integers dividing N.
We also define 0 < k, <1 to be the real number satisfying:

e = T (U™) = v (U™)j (U™, 2) = v (U, 2) = v(rU" 77h). (1)

Classically ., is chosen to be in [0, 1), but in this Section [3| we want k. to be 1 instead of 0
as the quantity x-! will appear later on.

k. is referred to as the cusp parameter. The quantities n,, x, only depend on the equivalence
class of the cusp 7oo modulo I' (given v).



Remark 3.3. n, depends on I' and k, depends on I', v, but for notational purposes they will
always be with respect to I' and v. This will only cause confusion in one of the proofs, where
it is mentioned.

Remark 3.4. In the classical setting I" a congruence subgroup with automorphy factor j2*,n €
N the cusp parameter k., is always 1 and the cusp widths are integers dividing N. In case
of real weight the cusp parameter is needed to shift the functions such that they admit a
Fourier expansion (see Corollary [3.4)).

Theorem 3.3. Let f be an unrestricted modular function with respect to I, k,v. Then we
have:

1. Y7 € SLa(Z) : flxT is an unrestricted modular function with respect to I'™ k,v7,
2. V711,72 € SLa(Z) : flxkmie = o (71, 72) (f671) k72,
3. V1 € SLy(Z),¥y € T« fliyr = o(v, T)o(y) flsr,
4. V7 € SLy(Z),Vz € H: (fa7)(2 + nr) = e (f|a7)(2).
Proof. See [Ran77) theorem 4.1.1 page 89. ]

Corollary 3.4. f as in the theorem, then f|,7 has a Fourier expansion of the form:
27r1(m+/i7—)z
f‘kT Z am nr .
meZ

Proof. We introduce the function

(fler)*(2) = e 272 (£l (2),
which satisfies
(flem)*(z +nz) = (f[e7)"(2)-
And has thus a Fourier expansion of the shape:

2
b)) = 3 an(m)e 2,

mEZ

From which the corollary follows. n

Definition 3.5. An unrestricted modular function f with respect to I', k, v is called a mod-
ular function with respect to I', k, v if for every cusp 7oo the Fourier expansion of (f|7)*
has only finitely many negative terms.



For a modular function we denote the order of f at 7oo with respect to I' as
ord(f,700,I') = inf{m € Z|a,,(7) # 0} + k.,

where we use the convention, that inf () = co = supZ. The order is independent of the I"
equivalence class of 700, but the coefficients itself can vary within the equivalence class.
For notational convenience we denote by

—

(fle)(m) = am(7)

the m-th Fourier coefficient of (f[x7)*. We remark here once again that this definition
does not coincide with the classical definition of the Fourier coefficients of modular forms of
integral weight. This is due to our choice of the cusp parameter being 1 instead of 0.

Definition 3.6. A modular function f with respect to I', k, v is called a modular form with
respect to I', k, v if f is holomorphic on H and for every cusp Too the order ord(f, 700,T") is
non-negative. If for every cusp the order is positive, then f is called a cusp form with respect
to I', k,v. The space of all modular forms with respect to I', k, v is denoted by M(T, k,v)
and the space of all cusp forms with respect to I', k, v is denoted by S(T', k, v).

Theorem 3.7. The spaces M (I, k,v) and S(I', k,v) are finite dimensional.
Proof. See [Ran77| theorem 4.2.1 page 102. O

3.2 The Petersson inner product and Poincaré series

Definition 3.8. A fundamental domain Fr for I" is a subset of H, which is a finite union of
domains, which satisfies:

1. For every z e H: |[FrNT'z| <1,
2. For every z ¢ H: Fr NIz # 0.

Proposition 3.9. A fundamental domain F; for SLy(Z) is given by F; = {z € H||z| >
1A —% <Rez< %} If SLo(Z) = | | I'r;, then U7 Fr is a fundamental domain for T.

Proof. See [Ran77| theorem 2.4.1 page 51. O
Definition 3.10. The Petersson inner product on S(I', k, v) is defined by

_ 1 Nala) pdxdy
Uyﬁ—uw)mf(w(w 2

A

where pu(I') = [SLo(Z) : T'] = [PSLy(Z) : T']. Tt is indeed an inner product and is independent
of the choice of the fundamental domain Fr and independent of the subgroup I', i.e. if [V < T'
of finite index, then

<fag>1—‘:<fag>1—"7 vfage‘g(F?k?V)QS(F/?k?V)‘




Definition 3.11. For k£ > 2 we define the m-th Poincaré series of weight £ at the cusp
77 oo, where 7 € SLy(Z), with respect to I', v as:

2mi(m + Ky—1) )
TYZ

exp ( —
G.(T,k,v;z,m) = Z -

J(my2)kv(y, 2)

’yEf‘T—loo \f

Theorem 3.12. The above Poincaré series converges locally uniformly on H and defines
thus a holomorphic function on H and defines an unrestricted modular form of weight k with
respect to I', v.

1. They satisfy the relations:
1

o(1,72)

GTI(F7k7V;'7m)‘k7-2: G7172<FT27k7VT2;'7m);

2. If m+ k-1 >0, then G.(I',k,v;-,m) € S(T', k,v);

3. Ifm+r— =0, then G (T, k,v;-,m) € M(T, k,v) non-zero with ord(G,, 7 'oo,T') = 0
and at the other cusps ¢ Z 7 toomodT one has ord(G,,(,T) >0

4. If m+k.—1 <0, then ord(G,,7 oo, T') = m+k and at the other cusps ( 7 'oomod T’
one has ord(G,,(,T") > 0.

Proof. See [Ran77| theorem 5.1.2 page 136. O
Theorem 3.13. We have for k > 2, f € S(I',k,v), 7 € SLo(Z)\{-U'|l € Z}, m + k, > 0:

walk 1) s
M(F)(47T(m—|—,{7_71))k_1<f|k )(m).

Proof. See [Ran77| theorem 5.2.2 page 149. O

<f7 G7—<F, k,v; 7m>> =

Theorem 3.14. For t € SLy(Z) the Poincaré series with k > 2 satisfy the following equality:

2mi(mtrr)z 27ri(r+n7_,1)z

G,(D,k,v;z,m)=d,e ™1+ E a(r,m; ) B
r4+rk1>0
where
2mis(m4ry)
e "I e —177s
6. = { STy if T U € T, for some s € Z,

0, else,



and

( o]
(27T)k -k k—1 W(T',v;r,m;c) .
-1 = 07
F(k)z (r+ k) Zl (1) , if m4 K1
e (22)” (22)
nr m+ Kq—1
= W(T,v;r,m;c) A [(r+ kr)(m+ K1) ,
a(r,m;7) = X ; nrc i1 —\/ N ;i mA+ Kk >0,
[} 351
e (22) T |
nr m—+ K-t
=~ W(T,v;r,m; 4 _
> (Lovirmie), fAm Jrtr)mtr] )
— nic c NNe—1

The Bessel functions Ji_1, Ir._1 are given by:

= ()

Jr-1(2) = Z L(m+1)(m+ k)’
> (5)7m et

Ty-1(2) = Iwninmm+ky

m=0
and the generalized Kloosterman sum is given by:

exp <@ ((m + Kr-1)a N (r+ /i[)d))

C Nr—1 nr

W(T,v;r,m;c) = Z

a x
7:<c al)ETjT

where J. s the double coset

o )o(r, )

. M\rHU*s € Z} /.
g=p \VHOBez
Remark 3.5. 1f 6, # 0, then ny = n,—1 and Ky = K,-1.

Proof. See [Ran77| theorem 5.3.2 page 162. O

Corollary 3.15. Let {f;} be an orthonormal basis of S(T',k,v), 7 € SLoy(Z)\{-U"|l € Z}
and m + k-1 > 0, then we have:

— ) D)(4n(m + kp1))kt
S B ) it

> %% FT_l 1, . 4 -
X <1+27ri_kz ( 1 ,m7m,C)Jk—1 (—W(m_l_KJ 1))) :
p— N.-1c N1

10

710




Proof. We have

GT(Fa k,v; Z7m) = Z(GT(F, k,v;-, m)? f]>fj(2’)
nk D(k—1)

= (D) (En(m - ) Z (il (m) f5(2)

and henceforth

S R )6 = T G e 2
R L
nE Tk — 1) Gr(T™ [k, v™ 5z,m).

Using the previous theorem we can easily deduce the m-th Fourier coefficient at oo. To verify
the equality one easily checks that 6; = 1 and n; for I™ ' is equal to n,-1 for I'. And by
also that x; for I™ ', v™ ' is equal to k,-1 for [, v. m

3.3 Bergman kernel

In this section we check that the construction of a reproducing kernel (Bergman kernel)
for Siegel modular forms given in [K1i90] can be adjusted to give a reproducing kernel for
modular forms of real weight and automorphy factor v on I', a finite index subgroup of
SLy(Z).

We define the Bergman kernel for I', v, k > 2 on H? as:

h(z,w) = Z o =

= (52) v(r2)

Theorem 3.16. The Bergman kernel satisfies the following properties:

1. The sum converges absolutely uniformly on the sets {z € H|e < arg(z) < m—e} x {w €
H| Imw > €},

2. VweH: h(-,w) € S(I', k, v),

3. Vfe ST,k v): .
(f,h(, —w)) = RS - fw).

~—

11



Proof. We have for 7 € SLy(Z):

(A (, w) k) (2)] =

1 1
T 2
1
- Z w+'yTz :

v(vy,72)

vyel’ | |j 7772)|k|j(7—a Z)|k
ol Lt !J(VT z)|F
—k
17 (7, 2)|F
~y€SL2(Z) ’

The latter converges uniformly on the mentioned sets. It follows, that A(-, w) is a holomorphic
function on the upper-half plane. Moreover we can exchange limit and summation in the
following;:

lim |[(h(-,w)|x7)(2)] < lim Z kl.

Im z—o0 Im z—o0 eSTa(2) % ‘ |‘7 (,-}/7 Z) ‘k
. 1
- Z 1 lim w+’yz =0
veSLa@) ‘ 15 (v, 2) [k
To see the latter we distinguish two cases. Let v = (i 2) If ¢ =0 then

lim |w+ vz = lim lw+d ' (az +b)| =
m z—00

Im z—o00

and j(v,2) =d. If ¢ # 0, then |w + vz| > Imw and

lim |j(fy,z)|: lim |ez+d| =

Im z—o00 m z—00

We also have for 7 € T":

1
h(Tz,w) = :
Z (w—i—’y‘rz)

el 2i

Z e = u(r, 2)h(z, w).

V(’77TZ el 2 ) V(77—7 Z)

From which the second claim follows. The third claim needs more work. Let f € S(I', k,v).
We have:

v2)Yy

—
—~
N
SN—
=
\_N
|
El
Ny
ol
Il
=
S
Neagd
ol
I
|
Ay
—~




Plugging this in the definition of the Petersson inner product we find:

= / I;nzz)’c dxgy
Fr oer w z Yy
1 k dxdy
(_ /ﬂr w
2 2)y* dxdy

:#(F) H(%)k y?

Using a Cayley transformation [, : H — D,z — ¢ = (2 — w)/(z — W), which maps the
upper-half plane biholomorphic to the unit disk, we will transform the integral. For this we
denote z = x + iy, w = u + 1w, = £ +in. We have the following identities:

dl w—w 2v 4o
dz  (z—w)? (z—w)? Sdi |z — wl|* v
1_|<‘2:|z—w|2—|z—wl2: dyv
|z —w]? |z —w|*

Back to the integral we have to calculate:

g 1o () [ ]

21

N —Fk — |2k

B w—Z —Z _, 4d&dn

- [ro () a-e ]

4 z—w\" L, dedn

= Df(z)( ¥ ) (1<) A= CPR

4 déd

:J/Dﬂ( (1= |C|)%-

Where B
11 =16 (357)
is holomorphic on D and satisfies
OO~ 1CP)2] = w3y £ ()] g 1
By computing the following integral for 0 <t < 1, > —1
! ™

N B t 2 N B (1 i 7’2)a+1
/t]D)(l — |¢[*)*d&dn = /0 /0 (1 —r*)*rdpdr = B

13

(1— (1=t

r:0:a+1



we see that the integral left to be computed converges absolutely uniformly for £ > 2. Hence
we have:

(¢ dedy L dedn
L7100 -1 m—/f 'C”( mRBE
o (™ ( _ d&dn
i[5 0) ~ N e
fT " ( ded
IJEFZ /C (= P e

As the Taylor expansion converges absolutely uniformly on ¢ID. Making the substitution
¢ — €2™3( for some suitable s € R we see that:

B dgdn ) EH A==, ifn=0,
/Cl <Py (1—1¢P)? {0, if n> 0.

And therefore we have:

T B dﬁdn oy, T T W)k
/f 1= I et = 1100 Flwy*,

which completes the proof. O
Corollary 3.17. Let {f;} be an orthonormal basis of S(I',k,v) and 7 € SLy(Z), then we
have: b1 .
D IDEP = p0) %= > -
J 8 yel'™ (’YZ%Z) VT(’% Z)
Proof. We prove first the case 7 = I, which follows easily from the formula:

B T) = S0 T L) () = o ey S ()

J

For the general case we use the special case in combination with Theorem which shows,
that {f;|x7} is a basis of S(I'", k,v"). The orthonormality follows from:

dxdy

1
- ) @yt
B u(I) /rlFr(ﬂk )(2)gler)(2)y y?

= <f’k7—7 g|kT>FT7

where we used p(T') = p(I'7), the SLy(Z) invariance of the measure y~2dxdy and that 77 'Fr
is a fundamental domain for I'7. ]

14



3.4 Convexity bounds

In this section we give various bounds for yz|f(z)| for f € S(T',k,v) in different regions.
This will require uniform results on Bessel functions, which one can find in the appendix [A]

The basic idea is the following: Let f = f; € S(T', k,v) be normalized with respect to the
Petersson inner product and extend it to an orthonormal basis {f;} of S(I', k,v). Then we

have:
v |f(2) <. v ’“Zlfy

Now y2|f (z)| is T invariant, so it suffices to look for the maximum in a fundamental domain.
We also have Im(72)2 | f(72)| = y2|(f]x7)(2)|. Hence we have:

supyf|f(2)| < max sup\/ >l 2)

zeH 7€'\ SL2(Z) 2¢F;
where F; is the standard fundamental domain for SLy(Z).

Our first method will use the Fourier expansion and a nice application of the Cauchy-Schwarz
inequality to involve the Fourier coefficients of the Poincaré series:

2

— 2ri(m+rr)z
> (filsm)m)e

m+kr>0

g( ) ‘W)(mﬂemwy)

m-+rr>0

17 = Qﬂ(mﬂf)y 2n(mtrr)y
S( Y Nl m)Pe )( Y Ame )

m+rr>0 m+kr>0

[(filem)(2)]? =

where the )\, are positive reals to be chosen later. Summing over j we get:

ykzwjrm(z)\?s( > A Am)yte <)>< > Ayt ’) (3)

m+k+>0 m+r,>0
where

m(m+ Kk, ))kF T UTim,m;c Tm(m+ K
Atm) = M (”sz . = (MD
(4)

For the generalized Kloosterman sums we are going to use the trivial estimate:

W (L™, v7;m,m, c)| < niec

15



Before we go any further we shall remark here that we can assume k£ > 1 as we want to
investigate the behavior as k — oo.

We now have to deal with the sum

>

c=1

()|

cn,

We split this into the different regions:

1 k=1 - dr(m+rr)

2 = cnr )

2. k—1—(k—1) > nlndsg) > Jhd

cnr — 2

3. k—1+(k—1)>2mden) > b1 (k—1),

R e N (S U

Where 1 > a > % yet to be chosen. For the first region we have by means of Proposition

A.DF
Z Jp_1 (MTTTF”T))‘ < ﬁ Z (QW(TTJ:RT)) k-1

c>4m % ( m::_:”'r ) c>4m % (%:"')

1 <2W(m + ET))’H <\/§ dr(m + m)“

n, Vk—1n,

X <1+ \/5'47T(m+’fr))
k—1(k —2)n,

oL (k-1 E L mERe s
(k) 8 n,

< k75 <1+m+HT-k—3>.

nr

In the second region we have by Proposition [A.6}

4 + Kr + Ky 14
> Jk_l(—ﬂ(n;n K)>’<<<mnK>k§.k§
2 m+tKr T T
4n,/—k71(7m )20,

e (AT ) (k-1 (k—1)*) "1 (6)
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For the third region we have using Proposition [A.4}

4
Z Jr—1 (—W(TZT;— HT)) ‘ < (m + N

Wl

(T ) (1= (k1)) T e, "
> dm (AT ) (k=14 (k—1)*) 1

nr

m+ K,

W~

k5.

A

And in the last region we have by Proposition [A.8}

dr(m + K, m + K, _ _atl
S e () = (e
A (AT ) (k=14 (k—1)) "1 2c ! ! (8)
< <m + KJT> k_a1-5
nr

We make the choice a = 12 and get for A(m) (defined by equation () the estimation:

p(I) (4m)*

|A(m)| < Wk — 1)

(0m 4 5= (1 nek™5) () ). (9)

Considering the inequality and the Cauchy-Schwartz equality case we should choose
Am &~ (m + k7). So lets put Ay, = (m + ;)2 with § = o(k). The sum

S(a, B, k) = Z (m + k)% P o Bk >0 (10)

m+k>0
appears often in the next few calculations, hence the following lemma will be useful.

Lemma 3.18. S(«a, 3, k) as defined by satisfies the following inequalities:
S(a, B, k) < B (a+1)+ %@
and for a < Bk we have:

S(a, B, k) < B (a4 1) + k%P7,

Proof. The function z%¢~?* increases on (0, 5] and decreases on [, 00). Hence we get

S(a, B, k) < /00 % Prdr + (%)ae_ﬁ

oo
S/ xaefﬁmdx—i—ﬁfaaae*a
0

=B T (a+1) + B %% ™.

®[Q

17



And if one assumes o < [k, then:

a, 3, K) g/ e Pt dy 4+ ke Pr
g

IN

(a+ 1) + %P7,

Using (9) in (3) with the choice \,, = (m + k)2t we get:

PN < s (56 )

k 2 w (k2
s (b 55 (E 61,7 )+ kB (26" k).
2 n, 2 n,

Using Lemma |3.18 we have:

k. or 2my\ 20N [k 2my\ 270 [k 0,
S<—+5,—y,m7)§( y) F(—+5+1)+( y) (—+5) e 27?
2 N, n, 2 n, 2
k

(47T>_§_5y_§_6_1k%+56_§ 1 yk~2
< 7%7571 n ’
nr T
k 27y (47T)_§+‘5y s =03 yk~3
8(5_5_1’T’KT><< 3T br n. |’
k 2y (47T) +oy =501 A =03 yk~2
o (5 “%T;“) < e S

Plugging these inequalities into ((11)) we get:

Proposition 3.19. Let v be an automorphy factor of weight k > 1 for ' a finite index

subgroup of SLyo(Z), T € SLo(Z) and {f;} an orthonormal basis of S(I', k,v) then we have
for z € Fy:

1

yk™>2

n,

1+

r nTk%
TNl « M

{1 ek 4+ T | (12)
y

For large i we can improve on this. For this purpose we assume |6| + 1 < & 5 and y > 3}2} )
These assumptions will allow us to use the following lemma.
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Lemma 3.20. The following inequality holds for x > 6%, «a, 3 > 0:

_ o — _ Bz
TP < q¥fT %Y e 2

Proof. Let x = co‘ then

_ o — _ Bz _
%P = 0B %Y e 2 -(ce1

[S1leY

Note that 6!~ < 1 and that ce'~2 is decreasing on [2, 00). O

Using Lemmata and we get:

—k_5-1
ko2 oy 2 k ks 2
S(E46 k)< (Y P(E 4 641) r2te e
2 nr N, 2

ko 2my omy\ P RN , :
5(5_5’_’“) <<( ) (5) e 3 |14k tkze )
n, n, L ]

Plugging these inequalities into ((11)) we get:

Proposition 3.21. Let v be an automorphy factor of weight k > 1 for I a finite index
subgroup of SLao(Z), 7 € SLa(Z) and {f;} an orthonormal basis of S(I',k,v) then we have
for z € Fry > 3"”k:

)n.ks _sen,]? N,
kZ| f]|k7- |2 < % 1+ /{T_lk%e nr y] [1 _’_nTk_g + ?k_fs} . (13)

Our second method will be based on the Bergman kernel, in particular the identity of the
Corollary For this purpose it is sufficient to bound the following sum for z € F;:

k k /
Z vz—% ]i“y < Z Yz—Z ky . - Z (yy ) g ! (14)

'yEFT( 2i ) UT(% Z) ~v€SL2(Z) T‘ |j(7’z)|k y€SL2(Z) <($_Tm/)2+ (%y/)ﬁ

19



where o’ + iy’ = 2/ = 2. Our first estimation will be crude and will be used to deal with the
cases y < 1 and k = 3, which then allows a good treatment of the sum, when vy is relatively
small in comparison to k. First notice, that by AM-GM we have

2
y+y
< 5 ) > yy'.
k

Thus every term is < 1. For ¢ > 0, (¢, d) = 1 fix a matrix 7.4 = (Z d) with | Re(yea2—2)] <

% then we have:

Z (yy') - < 2492 Z Z (yy") k+22 Y

k k
e () () R () e)) (@) )

where 2 + iy"” = 7.4%. Recall the assumption k > 2 for the Bergman kernel. For the last
sum we have:

SIS

y"* y"*
Z 9 g < Z 1+ Z (Q)k
b>0 ((%) 4 y2> 0<b<2y+1 b>2y+1 \2
00 kyk
2y Uu
<.

For the inner sum of the middle sum we have:

k
2

S (mi”)

1
< Y Wl :
beZ <<x_:§”_b>2 + (y+y”) )2 \b\<y+y”+2( 2 ) bzy+y”+1 (5)
mE ok
< (2y+3)+1) (ﬁy,,) o+ () / il
: ) y+y” U
mE
<y (yy")>
()"
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Summing this over the outer sum we get:

1 —k 1 —k
(yy”)g lcz + d| + oot d lez + d| + o2+ d]
D i = 2 5 <> > 5
(65)07,1 (T (05)0, c>0 dez
1 —k —k
3 |CZ+d|+m |Cz+d|+\cz—+d|
ZZ D2
c=1 deZ 2 c>4 deZ 2
1 —k
3 lcz +d| + 3 &
lcz + d| d
Z > 5 +2>. > (5
=1 |d—cz|<2y+4 c=1 d>2y+3

Y (Her s (5)

4 |d—cz|<2cy+3 c>4 d>2cy+1

o t - o0 1—k o0 t —k
<y+ (—) dt+/ (%) ds+/ / (—) dtds

2y+2 2 3 2 3 2sy 2
1
1 R
<<y< T 2)

So we have

MBS

(yy')

et ((57)" + (49))

We now assume y > 3,k > 6, then we have:

3 (yy')

et ((5)" + (45))

IMES

aofir ). "

yk

(1 +?)

n $ (yy')

+ESLa (DN (U] [n]<2N} ((”ﬂ—T"”’)2 n (Mf)

[T

<2+8N

k k
2 2

? (16)
yk
<1+ N X n
(i+v°)°
k=3
yy/ 2
+vy sup ( ) -

YESLa (Z)\{£U"| |n|<2N} ((z;x’)z 4 (y+y’)2> 2
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We need to estimate this supremum. If y = £U", then n > 2N and we have:

AT k-3 N2 —%
(yy') __< y - <1+_2> |
((u/)%(m’)?) = (NP4 e Y

1 3—k
(yy) =" < (yy) = ez +d| + cz +d|
(52 ()™ (59 2
2 2

<

We want both of them to have faster decay than any polynomial in k. This is because
for large y we can use Proposition to get better estimates. This fast decay is given if
N > —%— for some % >n > 0. We regard n as a fixed constant. We thus have:

1
k37N

sup s K
vESL2(Z)\{£U"| |n|<2N} <<x;x/)2 n (ﬂ)2>7

(17)

for some 6 > 0. For {zgz < 1 — 5 the factor
g 2

k
Y

E

2

(7 +v2)

has the same decay (change ¢ if necessary). One verifies, that N = - %y_n is about best
possible. We summarize the estimations in the following proposition.

Proposition 3.22. Let v be an automorphy factor of weight k > 6 for a finite index subgroup
I of SLy(Z), T € SLo(Z) and {f;} an orthonormal basis of S(T,k,v). Fiz 5 >n > 0 then
we have for z € Fy:

R < nmk (14 ).

1_
2
This improves Proposition [3.19 when y is small. And gives the following theorem:

Theorem 3.23. Let v be an automorphy factor of weight k > 6 for a finite index subgroup
I' of SLy(Z) and f € S(T',k,v) with Petersson norm (f, f)r = 1. Then we have for any
compact subset K C H:

Sulgyglf(z)! <x p(I)zkz,
zZe
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This generalizes a result of Rudnick [Rud05| to arbitrary finite index subgroups and real
automorphy factors.

One should also remark here, that the estimations in the Propositions [3.19] [3.21] and |3.22
combined are rather good if one takes into account the dimension of the space. As one would
expect that the following holds:

Let m € N be a natural number and v, ..., v, be automorphy factors of weight k1, ..., &k, >
0 onI" C SLy(Z) a finite index subgroup, such that M (I, k;, v;) # {0} for i =1,...,m. Then
there exist constants Cp,Cy > 0 such that for any finite index subgroup IV C I" and any
ni, ..., Ny, € Ny we have:

Cop(DHYET kD™ < dim M(TY k7o kD vt covpm) < Cop(T)ET . k.

Remark 3.6. The upper bound has been proven in |[Ran77| theorem 4.2.1 page 102.

Using the three Propositions [3.19] [3.21] [3.22] with the equation (2) we deduce the following
theorem.

Theorem 3.24. Let v be an automorphy factor of weight k > 1 with respect to a finite
index subgroup U of SLo(Z). Further let f € S(U, k,v) with (f, f)r = 1 be a normalized cusp
form. Then we have:

11 3
sup y® |f(2)] < max max{ns, K2} <1 + nTk’%“) N M(P)%k%,
zeH €T\ SLa(Z)
5f(2) < (1+ 2t 72 ) )ik
su 2)| < max  n? max  kr2 |- :
Zgﬁ Y €T\ SL2(Z) €T\ SLa(2) a

1
Proof. For y < n2k'~¢ we use Proposition |3.22] for y > % we use Proposition |3.21and for
y in between we use Proposition w For the second one we use for y < max ecr\ sr,z) nr
we use Proposition , for y > =22% we use Proposition and for y in between we use

KT

Proposition [3.19] O

If we reduce this theorem to a classical setting with T' = T'o(N) and automorphy factor yj"
for n € N, we get the following theorem.

Theorem 3.25. Letk € Z,k > 6, N € N, x a character modulo N, such that x(—1) = (=1)*,
and f € S(To(N), k, xj*) normalized such that (f, f)ronvy = 1. Then we have in complete
uniformity:
k 1 1 1,1 3

supy?|f(z)| < N2 loglog(16N)2 <1 + N?/{:_2+E> k=,

zeH
Proof. We have n.|N and £, = 1 for all 7 € SLy(Z). And pu(To(N)) = N[[,y(1+p") <
Nloglog(16N). So it follows as an immediate corollary of the second inequality of the
previous theorem. O
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One may believe that the exponent % is the best possible by having a look at the case N = 1,y

1

trivial and k € 2N. Consider the function f(z) = dim S(SLy(Z), k, j*)~2 O sign(fj(l))fj(z),

where { f;} is an orthonormal basis of Hecke eigenforms. This function f satisfies sup,cy ys lf(2)| >
3

kz7¢ and <f, f>SL2 (z) = 1.

We now come to some lower bounds on average. We have:

1 Tk _ 2mi(mirr)z
/ yE (flir) (2)e =5 gy
0

k —_—
v |7l (m)| = —
1 2w (m+k7)

< [T ) 9

Ny

(18)

If we sum the squares of this inequality over an orthonormal basis { f;} we can use the Fourier
coefficients of the Pioncaré series (see Corollary [3.15) for the left hand side and for the right
hand side we can use Cauchy-Schwarz to get:

s Sl @r 2 53 ([ ae) ([ o )

1 oy 2
) ([ 1)
> e S S| )|

s pe-tziza, pO)Ar(m 4 )
nkl'(k —1)

<1+2 sz W vmmie) <4w(nzn4: m))

(19)
For k > 320(m + 1)? we can use Proposition to estimate that the right hand side is
bigger or equal to

_antmsrn) (D) (d(m A+ p)) Ck—1) [2n(m+ k) \""
yke nr . DT 1) (1 — 21, (k) ( o ) ) .

kn,
dr(m+kr)?

If one takes y =
theorem:

m = 0 and 7 such that s, is minimal. We get the following

Theorem 3.26. Let v be an automorphy factor of weight k > 320 for I' a finite index
subgroup of SLy(Z), and {f;} an orthonormal basis of S(I', k,v). Then we have:

S eI 2 s Gps AR (o ()
- Zemy i Yl min K, k '

7E€SLoy (Z)
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This coincides almost with the “leading” term given in Theorem [3.24l In particular we have
the following corollary.

Corollary 3.27. Let v be an automorphy factor of weight k > 1 for 1" a finite index subgroup
of SLa(Z). Then we have for u(T') < k'~ and {f;} an orthonormal basis of S(T, k,v):

3

p(D)k2
Suﬂlizyk|fj(2)|2 =
R reSLa(z)

where the implied constant depends at most on n and the implied constant in u(T') < k177,

Proof. This is just a combination of the Theorems and by noting that each cusp
width is at most as big as the index. O]
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4 Modular forms of half-integral weight

As the name suggests in this section we restrict ourselves to modular forms of half-integral
weight k, i.e. k € %Z. Which of course gives rise to the question: with respect to which
automorphy factor? The simplest function one can think of, which has an automorphy factor
of weight %, is the ©-function given by:

@(Z) _ Z 62mn2z.
ne”L

It gives rise to an automorphy factor for the subgroup I'y(4). Due to it’s importance in
number theory, it is reasonable to define the corresponding automorphy factor

j®(77 Z) = @@(Z:))

as the standard automorphy factor of weight 3 for T'o(4). Which means if we talk about a
modular form of half-integral weight & we mean an element of M(T'o(4), k, j2F). An explicit
formula of jg has been given by Hecke:

Theorem 4.1 (Hecke). The automorphy factor jo corresponding to the O-function is given
by:

M

‘ c\ _1. b
J@(’Y’ Z) = (C_Z) €d lj(’ya Z) ) \V/7 = (CCL d) € F0(4),\V/Z S Ha

where
1, ifd=1mod(4),

“= {@ if d = 3mod(4),
and (g) 1s the Jacobi symbol if d > 0 and for d < 0 it is given by:

(c) ( c ) h 1, ife>0,

—=n-({—) wi =

A =<1, ife<o

Proof. See [Kob93| page 148 and following. ]

From this automorphy factor one easily constructs more automorphy factors on I'g(4N) of
weight £, which are given by:

. b
X% = (4 )) € Tulan) s e B

where y is an even character modulo 4N. We denote this automorphy factor by jgﬁc.

We should also remark here that contrary to the previous chapter we define the cusp param-
eter k, to be in [0,1). This affects our definition of the Fourier coefficients in such a way
that they are defined in the same way as in common literature. This has the effect that the
following theorems look more natural.
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4.1 Hecke operators

In this section we give an overview of the Hecke operators in the half-integral case for
[o(4N) and j&,. More details and generality can be found in [Shi73] and [Kob93]. As in
the integral case, Hecke operators for modular forms of half-integral weight can be defined
by double cosets, but contrary to the integral case one has to work with a bigger group &,
whose elements are of the type (7, ), where v € GLj (R) and ¢ is a holomorphic function
on H satisfying: ) 1

|o(2)] = (dety) "7 j(v, 2)[2.

G is then made into a group by the multiplication law

(1), @) = (v (p o) - ¢).

From now on we assume, that £ is truely half-integral, i.e. k € % + Z. We can now extend
our definition of the “|” action to &, by defining

(fle(v, ©)(2) = ¢~ (2) f(72).

We have an inclusion of T'y(4) in & given by v — v* = (7, je(7,-)). We go on and define the
m-th Hecke operator for S(I'o(4N), k, j&, ) as:

J1:T(m) = ) Flié.

£€FO(4N)* \F0(4N)*£17m1_‘0(4N)*

1 0 1
(3 D))

These operators are well defined. T'(m), T'(m') commute for (m,m’) = 1. They are hermitian
with respect to the Petersson inner product and are thus simultaneously diagonalizable. They
are the 0 map for m not a square and T'(p?) has the following effect on the Fourier coefficients:

where

Nl

AT = )+ 30) (S22 ) xGPP2Fnf?), 0

A~ _1
where f(n/p?) = 0 if p* /n and x(p) (w) =0 for p = 2.

p
For a Hecke eigenform f with eigenvalues w, (with respect to T'(p*)) the above gives rise to

Euler products for ¢t square-free and relatively prime to 4N:

ST = ] [1 — x(p) (%@)pk‘g_s] 1= wp ™ X ()]
(21)
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4.2 Shimura map and the Kohnen plus space

Shimura [Shi73| has shown given an Hecke eigenform f of S(I'o(4N), k j ") with & > 2 one
can use the Euler product (21)) to construct a modular form F(z) (2 in S (Co(M), 2k —
1 j2k 1) for some M with the same eigenvalues. Here j2k ! denotes the automorphy factor

x(d) 7y, 2)* 7" on To(M). N
Z 2z (22)

where

ST Emyn =T [ —wpp* + x(p)™ 2]
n=1

p

Niwa |[Niw75| has shown, that M can be taken to be 2N. By restriction to a certain subspace
SHT(To(4N), k, j&), the Kohnen plus space, Kohnen [Koh80], [Koh82] was able to reduce the
level all the way down to N. The Kohnen plus space is given by:

SH(To(AN), k, j2) = {f € S(To(4N), k, &) |f(n) = 0, ¥n : (=1)¥ 2n = 2, 3mod(4)}.

We now restrict ourselves to the simplest case N = 1, then the Shimura map restricts on the
Kohnen plus space to an isomorphism of Hecke algebras, by replacing the Hecke operator
T(4) on ST(Ty(4), k, j&) by an other operator T (4), which satisfies also for p = 2 (i.e.
without the second comment after the equation). As shown by Waldspurger and later made
explicit by Kohnen and Zagier [KZ81] there is a correlation between values at the center of
the critical strip of twists of the L-function associated to modular forms of the full group
and the Fourier coefficients of their preimages under the Shimura map:

Theorem 4.2 (Kohnen-Zagier). Let k € 1 + Z, F € S(SLy(Z),2k — 1,j%*7') a normalized
Hecke eigenform (F(1) = 1), f € S*(To(4),k,j%) a prez'mage of F under the Shimura
map. Further let D be a fundamental discriminant with (—1)*~2D > 0 and L(F, (B),s) the

analytic continuation of the Dirichlet L-series y ( )fk("%n 5. Then

£(|D])J? _ T'(k—3) |D|k—1L(F’ (2),3)
(f, fro k=3 (F, F)si,z)

Proof. We refer to [KZ81]. O

Remark 4.1. Tt is possible to normalize f such that all Fourier coefficients f(n) are real.
The other coefficients are related through and :

Foeloh = 7o) - St (3) - (5). (23)

d|n
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The Fourier coefficients at the other cusps O = are also related. For this we put:

v (@ ). (o).

And define a new operator Uy given by

(e =1 3 f (*) =3 flam)erine

z mod(4) n>1

Lemma 4.3. Let k € % +Z, f € ST(To(4),k,5&F). Then the Fourier coefficients of f at the
cusps 0,% can be given in terms of the Fourier coefficients at co:

) = ()2 X Famen,

n>1

W = (S e

n>1,
1
(—1)*~2n=1mod(4)

NI

(24)

Note that ( ) denotes the Jacobi symbol here.

Proof. In [Koh80] Prop. 2 Kohnen showed: (f|Us|xWi)(2) = (& )Qk_if( ). Applying “|zW,”
to both sides gives the desired result, by noting that “|,W2” is the identity map. The second
identity follows from:

(fliVa)(2) = (=i(2z + 1)) 7* 3 F(n)ermin(3-7)
(_1)‘“—%2;0:11110(1(4)

= (-2 +1) |2 Y - 3 f(nyermn(=)

n=0mod(4) (_1)k=3,=0,1mod(4)

= (—i(22 + 1)) F2(f|UL) (Z:Ll%) — (fleWa) (z + %)

by (52 - (= +3)
(
(

w\»—A

M\»—l

1
Jee [ (55) - (+3))
) 93k Z "2 f(n)e? 5 .
(—1)k= ;n>11mod(4)

2

2k
2

2k
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4.3 Sup-norm of modular forms in the Kohnen plus space

Assume k > 2. Let f € ST(T'o(4), k,j&") be a Hecke eigenform normalized with respect to
the Petersson inner product. And denote by F € S(I',2k — 1, j%71) its image under the
Shimura Map. Without loss of generality we assume, that F' is a normalized Hecke eigenform
(F(1) = 1) and thus we can make use of Deligne’s bound on the Fourier coefficients:

|F(n)] < d(n)n*! <« nF1*e

As in the real weight case we want to bound y2|f(2)],y2|(f|sWa)(2)| and y2|(f]Va)(z)].
It is easily seen that for y > \/?3 they cover a fundamental domain of T'y(4). Thus we may
assume y > \/?g in any further calculations. We will follow the method of Xia |Xia07]. For
this we need bounds on the Fourier coefficients, which we will get through Theorem and
the following two propositions.

Proposition 4.4. Let F € S(T',2k — 1,5%*71) be a normalized Hecke eigenform, then we
have:

D2k — 1)

94k—3 2k

(F.F) = Lisym?F, 1),

where L(sym? F, s) is the analytic continuation of

—2k—s\ — 2—2k—s\ " 202 26—8\ 2 OOﬁQ
H(l_alszz 2k ) 1 (1—apapp2 2k ) 1 (1—ap2p2 2k ) 1_ CC((;)) ZnSEZ)Z

p n=1
and oy, @, are the solutions to a, + a, = F(p), a,a, = p**~2.
Proof. See [Ran39). O
Proposition 4.5. Let F € S(T',2k — 1,52*71) be a normalized Hecke eigenform, then we
have:
k™ <. L(sym®F, 1) <, k°.
Proof. See page 41 equation 2.16 of [Mic07]. O

Let us assume we have a uniform bound for L(F,x, 3), where F a primitive holomorphic
cusp form with respect to the automorphy factor j2~! on the full modular group SLs(Z)
and x a primitive character modulo g. Which is of the type

1
‘L (F,X, 5)‘ < k%’ (25)

for some fixed constants «, 3. Then we are able to estimate the Fourier coefficients in the
following way. Using with Deligne’s bound one finds:

F?)] < FoDI St (B) T < fDpl () (26)
din
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This and the theorems relating the Fourier coefficients at fundamental discriminants then
gives for f € ST(To(4), k, j&) with k > 2:

(47)
(k)

Asin the real case we use Lemma to estimate sums that arise from the Fourier expansions
[29) at 00,0, 5.

k— 1+ﬁ

k2t

I\J\H NJES

[f(n)] < (27)

S(4m)skste (k-1
i) < s (R )
k 54 g[{;%"f k_1_|_6
) < EEEE s (A oy (29
()* (4

Ve ha\/e:
k' — + 8 P ] 3 E 1 B & 3 p
S<—,27ly,1) (47() 2 2 2y 2 2 2]{:2 2¢ 2 (1+yk )

We thus get the following proposition.

Proposition 4.6. Let k € % +Z, [ € ST(To(4),k,73&) a Hecke eigenform normalised with
respect to the Petersson inner product. Assuming holds, then we have for y > \/?g:

. Lits+5+e
y2lf(2)] <e —F—5— (1 +yk~ )
2

+
Yy
Lits+ate

—_— <1 + yk*%> ,

%
yzt
+ 1
<1 + yk‘5> .

[@

vw N

Y | (FlWVa) (2)] <o

[@

Jr

ofw N

fitst

2
1
5+

Y2 | (Vi) (2)] <

@

Y

For y > % we can again improve this using Lemmata and following to get:

kj - 1 1 1
S (—2 i ﬁ, 2my, 1) < (477y)*§*§*§]g§+§6*% (1 4 ]{;ie*ﬂ/) ]

Which gives the following proposition.
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Proposition 4.7. Let k € % +Z, f € ST(Lo(4),k, j&) a Hecke eigenform normalised with
respect to the Petersson inner product. Assuming then we have for y > %

. Lits+o+e L
y2|f(2)| e —5— (1 + ke ”y> ,

y2 2

y2 |(FleWa) (2)] <o

k 1 _ 7y
y2|(f|kv4)(2)|<<el—ﬂ(1+k:26 )

So if we assume the Lindelof hypothesis (o = 5 = €) we get the following theorem.

Theorem 4.8. Let k € 3 +7Z, k > 3, f € ST([o(4),k,j&) a Hecke eigenform nor-
malised with respect to the Petersson inner product. Assuming the Lindelof hypothesis for

the quadratic twists of L-functions associated to Hecke eigenforms of weight 2k — 1 on the

ull modular group SLo(Z) with respect to the automorphy factor j2*=1 we have:
f group P phy J

supy? | f(2)] < kTt
zeH

Proof. For y > % we use Proposition and for \/?g <y< % we use Proposition . O

For an unconditional result we use a subconvexity result of Michel and Venkatesh [MV10],
from which we deduce with a = 8 = % — ¢ for some 0 > 0.

Theorem 4.9. Let k€ 3+ Z, k > 2, f € ST(To(4),k,j&) a Hecke eigenform normalised
with respect to the Petersson inner product. Then we have that the sup-norm is bounded by:

supy?|f(2)| < k2.
z€H

Proof. For y < k2~ we use Proposition for y > 172T—k we use Proposition and for y
in between we use Proposition [4.6] where € is chosen suitably small. [

Remark 4.2. The convexity bound itself gives that the sup-norm is bounded by k3te. To
further improve this result with the given methods one needs o + § < %, which is likely to
be a hard problem.

We now come to lower bounds. Individually we can prove the following:
Proposition 4.10. Let k € $ +7Z, f € ST(To(4),k, j&) a Hecke eigenform normalised with

respect to the Petersson inner product and F' the corresponding normalized Hecke eigenform
through the Shimura map. Then we have:

] L(F, D .
sup y%|f(z)| > Jeie sup M
zeH D fund. disc., |D|
(-DF2D>0
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And we also have trivially

supy?|f(z)] > 1.
zeH
Proof. We use ([18) on the |D|-th Fourier coefficient together with Theorem [4 - and Propo-
81t10ns g H The first part of the proposition then follows, by choosing y =
other side we have

sup y*| f(2)]* > (f, Fro@ = 1.

zeH

]

For the square average lower bound we need the Fourier coefficients of the projection of the
Poincaré series of S(T'(4), k, j&) down to the Kohnen plus space. They have been computed
by Kohnen [Koh85].

Proposition 4.11 (Kohnen). Let k € + +Z,k > 2 and m € N, (=1)~2m = 0, 1mod(4).
Then the Poincaré series GF (Lo(4), k, j&, z,m) are given by the Fourier expansion:

Gf(To(4), k, & 2,m) = > Grm ()€™,
n>1,
(—1)"~ 3 n=0,1 mod(4)

with

k+ 4

) = 2 [ (0L T2 (2 S gy (%m)] .

And H.(n,m) is given by:

H.(n,m) = (1 — (=1)* i) (1 v (‘—i)) idm%(:%), (%) (%)kexp (m%) |

The Poincaré series satisfy

T(k— 1)
1(To(4))(47m)

Proof. See [Koh85] proposition 4. O

<f7 G}_(F()( ) k ]@7 ) )) = k_lf(m) Vfe S+(F0<4)7k7]g€)

Corollary 4.12. Letk € 5+Z,k > 3 and {f;} be an orthonormal basis of S*(To(4), k, j&),
then we have

> I - ST L JW\/_ZH m,m)Jy 1(7””)].
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Proof. The same proof as for Corollary applies. [

We use the same inequalities , as in the real weight case. For £ > 20m + 1 we can
use Proposition [A.5] again to get:

~ 2
sup Zy ()P = yFet Y fj(m)‘
a MTu(d) a2 gy &
> yketmmy P20 Nl .
=Y T(k—1) 3{ 7T(z) (k)
Chosing y = 47”” and m = 1 we get the following theorem.

Theorem 4.13. Let k € %+Z, k> 21 and {f;} be an orthonormal basis of S*(To(4), k, j&F),
then we have

k—1
S G 2 o 31 |>>N<“<4”’“3X(1‘0<(2—Z€) ))

Remark 4.3. This last theorem is easily generalized uniformly to S*(T(4N), k, j&).

Remark 4.4. By considering the dimension of the space ST(I'y(4), k, j&) this also shows that
for Hecke eigenforms the best uniform upper bound one can hope for is ki,
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A Bessel functions

Recall that the (modified) Bessel functions are given by

Jp(ﬂT) = Z F( (_1)m (%)

m+1DCm+p+1)
Y, () = sin(pm) " [J,(x) cos(pm) — J_p ()]

(2)""

Tolx) = mzzo Tim+ )D(m+p+1)
K, () = 5 sin(pm) ™ [ (2) = L,(x)]

Theorem A.1. On has for x > C > 0:

9,(@)| <oyt
Y, (2)] <cp 72,
Ky (2)] <opw2e™.

Proof. See [Wat44] page 199, 202. O

Theorem A.2 (Langer’s formulas). The Bessel function admits the following uniform for-
mula for x > p:

[NIES [NIES

1
J,(z) = w2 (w — arctan w)? [?J;(z) — §Y%(z) +0(p9),
where
2

w = i 1 and z = p(w — arctan(w)).

For x < p one has the formula
Jp(x) = 7 w2 (artanh(w) — w)2 K1 (2) + O(p™3),
where
2

w=4]1— e and z = p(artanh(w) — w).

Proof. See [EMOTS81| page 30, 89. O

Theorem A.3. For the intermediate range |x — p| = o(pé) we have the following asymptotic
for every M :

1 M-—1 - F(
_§m20 B (z sm(3(m—|—1)> —( )%(m—i-l)



Proof. See [Wat44] page 245-247. O
The proof given there is also enough to show the following proposition.

Proposition A.4. For |z — p| < Cp3,p>>c 1 we have the following:

1

|Jp(37)| Lo p 3.

Proposition A.5. One has for p > 222:

()’

BA ()|<<m

Proof. Using Stirling approximation for the I'-function one checks that:

= ()™

)
[Jol)] = mZ:O T(m+ )L (m+p+1)

6 § (p+1)*2 AN
ST+ m;) (m + 1) 2 (p+ m 4 1)rrm+ze-2m (2>
(5)" <[ _p+1 Y\’ e "
< mn;) (p—l—m—irl) <4(m—|—1)(p+m+1))
G (o \"
ST+ ;) (4(p+1))
(3)’
STH+D

]

Proposition A.6. There exists C' > 0 for which we have in the range z < p—C'p3(log p)3, p >cr
1 the following estimation: \
| Jp(@)| <cv p™3
Proof. We are going to use Langer’s formula (see Theorem |A.2 - ) for x < p. There z =
Py 5 +1 > log p for a particular choice of C’ and we estimate by using Theorem |A.1

1

[p(@)| =[x~ w™ % (artanh(w) — w) Ky ()] + O™ 1)
<o (pw)"2e > + O(p~3)
<L (2C’p§(10g p)i — C"pi (log p)§> p 05

Lo p

NI
£
~—

ol
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A similar argument can be applied to get the next proposition.

Proposition A.7. We have for the range p — C’p% > x> p— C’p%(logp)%,p >c 1 the
following estimation: )
[ Jp(2)| <o p73.

Proposition A.8. Forz > p+ Cp®, p >co 1 we have:

p T forl<a<i,
| Jp(2)] <c x3 < pfg, forl<a< %,
4
p3, for § <o

Proof. Use Langer’s formula (see Theorem ) for x > p. And note that for o > % and
p>c.a 1 we have z > 1. We can thus use Theorem to deduce:

1 1 3 1
|J,(z)] = |w™2(w — arctan w)?2 [é‘];ﬁ (2) — iYé(z) + O(p*%)
<c (pw) T+ 0(p73)
<c (#* =)+ 0(75).
From which the proposition follows. O
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