
ETH Zürich

Bachelor thesis

A theorem of Runge
On the finiteness of integral points of certain

irreducible rational curves

Author:
Raphael Steiner

Supervisor:
PD Dr. Clemens Fuchs

August 28, 2012



Contents

1 Introduction 2
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 2
2.1 Noetherian Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Dimension of a ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Discrete valuation rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Some Algebraic Geometry 6
3.1 Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Affine varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.2 Projective varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Functions, morphisms and rational maps . . . . . . . . . . . . . . . . . . . . 10
3.3 Non-singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Weil-divisors for curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Runge’s Theorem and Applications 17

5 References 25

1



1 Introduction

In 1887 Carl Runge proved the theorem stating that there are only finitely many integral
zeros of an irreducible integer polynomial in 2 variables such that its polynomial of highest
degree factors into 2 non-constant relatively prime polynomials. A later result by Siegel
showed that if an affine curve has infinitely many integral points, then it must have genus 0
and at most 2 points at infinity. But Siegel’s proof was ineffective in comparison to Runge’s
proof which was effective, when applied.
This bachelor thesis gives a proof of the finiteness in a slightly more general setting than
Runge’s original theorem and a bound in some simple cases.

1.1 Notation

N = {1, 2, 3, . . . } the set of natural numbers or positive integers.
N0 = {0, 1, 2, 3, . . . } the set of non-negative integers.
Z = {. . . ,−1, 0, 1, . . . } the set of integers.
Q the set of rational numbers.
R the set of real numbers.
C the set of complex numbers.
Q an algebraic closure of Q usually embedded in C in the standard way.
P(A) the set of all subsets of a set A.
Q(B) the fraction/quotient field of an integer domain B.
B× the group of units of an integer domain B.
〈B〉 the ideal generated by the elements of B.
r(a) the radical ideal of an ideal a.

Rings shall always assumed to be unitary commutative rings.

2 Preliminaries

In this chapter a short overview of some results from commutative algebra, especially discrete
valuations, and topological results are given, which are needed in later chapters.

2.1 Noetherian Rings

Definition 2.1. A partially ordered set (A,≤) satisfies the ascending chain condition iff
every countable chain a1 ≤ a2 ≤ a3 ≤ · · · is eventually constant, that is ∃N ∈ N : ∀n ≥ N :
an = aN .

Definition 2.2. A ring A is called noetherian iff ({I ⊆ A|I is an ideal of A},⊆) satisfies
the ascending chain condition.

Proposition 2.3. The following assertions are equivalent:
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1. The ring A is noetherian.

2. Every ideal of A is finitely generated.

Proof. See page 75 of [AM94].

Theorem 2.4 (Hilbert Basis theorem). If a ring A is noetherian, then the ring of polyno-
mials A[X] is also noetherian.

Proof. See page 81 of [AM94].

Example. The polynomial ring K[X1, . . . , Xn] over a field K is a noetherian unique factor-
ization domain.

2.2 Dimension of a ring

Definition 2.5. The Krull dimension of a ring A, generally referred to as the dimension of
the ring A, is defined as: dim(A) = sup{n ∈ N0|∃ p0 ( p1 ( · · · ( pn : ∀i = 0, . . . , n : pi ⊆
A prime ideal}

Definition 2.6. The height of a prime p is defined as: height(p) = sup{n ∈ N0|∃ p0 ( p1 (
· · · ( pn = p : ∀i = 0, . . . , n : pi ⊆ A prime ideal}

Definition 2.7. A noetherian local ring A of dimension d is called regular iff dimk(m/m
2) =

d, where m is its maximal ideal and k = A/m is the residue field.

Theorem 2.8. Let k be a field and let B be an integral domain which is finitely generated
as a k-algebra. Then:

1. The dimension of B is equal to the transcendence degree of the quotient field Q(B) of
B over k.

2. For any prime ideal p ⊆ B : height p + dimB/p = dimB.

Proof. See chapter 5, paragraph 14 of [M70].

2.3 Discrete valuation rings

Definition 2.9. Let K be a field. A discrete valuation of K is a surjective map ν : K× → Z
such that:

1. ν(xy) = ν(x) + ν(y),

2. ν(x+ y) ≥ min{ν(x), ν(y)},

this is usually extended to K by setting ν(0) = +∞. The ring R = {x ∈ K|ν(x) ≥ 0} is
called the valuation ring of ν. If k is a subfield of K such that ν(k×) = {0}, we say that ν
is a discrete valuation of K/k.
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Definition 2.10. An integral domain R is called a discrete valuation ring iff there exists a
discrete valuation ν of its field of fractions such that R is the valuation ring of ν.

A discrete valuation ring is a local ring with maximal ideal m = {x ∈ R|ν(x) > 0}, since
all the elements with ν(x) = 0 are units. R/m is called the residue field of ν. Moreover
two elements x, y satisfy x|y iff ν(x) ≤ ν(y). It follows that all non-zero ideals are of the
form {x ∈ R|ν(x) ≥ k} for some k ∈ N0 and hence noetherian. Also, since the valuation is
surjective, there exists an element x ∈ R such that ν(x) = 1, and all non-zero ideals are of
the form (xk) = (x)k, which is prime iff k = 1 and thus of dimension 1. Such an x is called
a local parameter.

Example. Let K be a field. All discrete valuations of K(X)/K are given by νf , where
f ∈ K[X] is irreducible and νf (g) = max{k ∈ N0| fk|g} (K[X] is factorial) for g ∈ K[X]\{0}
extended to K(X), and ν∞( g

h
) = deg(h)− deg(g) for g, h 6= 0.

Proof. Let ν be a discrete valuation of K(X)/K, R the corresponding valuation ring and
m its maximal ideal. If ν(X) ≥ 0, then K[X] ⊆ R and m ∩ K[X] is prime and thus of
the form (f), where f irreducible in K[X]. Then K[X](f) ⊆ R, so νf (g) ≥ 0 ⇒ ν(g) ≥ 0
and νf (g) > 0 ⇒ ν(g) > 0, further if νf (g) < 0, then νf (g

−1) > 0 so ν(g−1) > 0 and
ν(g) < 0, which implies K[X](f) = R and thus ν = νf , because the maximal ideals coincide.
If ν(X) < 0, then ν( 1

X
) > 0 and K[ 1

X
] ⊆ R and m ∩K[ 1

X
] = ( 1

X
). So again K[ 1

X
]( 1

X
) ⊆ R

and ν∞(g) ≥ 0⇒ ν(g) ≥ 0 and ν = ν∞. For further details see page 9 of [I93].

Proposition 2.11. Let ν1, . . . , νn be different discrete valuations of K/k, then there exist
elements x1, . . . , xn ∈ K such that νi(xj) = δij, where δij is the Kronecker delta.

Proof. See page 5 of [I93] or page 12 of [S08].

Theorem 2.12. Let R be a noetherian local domain of dimension 1, m its maximal ideal
and k = R/m its residue field. Then the following are equivalent:

1. R is a discrete valuation ring.

2. R is integrally closed.

3. m is a principal ideal.

4. dimk(m/m
2) = 1, i.e. R is regular.

5. Every non-zero ideal of R is a power of m.

6. ∃x ∈ R : every non-zero ideal is of the form (xk) for some k ∈ N0.

Proof. See page 94 of [AM94].

Proposition 2.13. Let R be a discrete valuation ring with valuation ν, m its maximal ideal,

t a local parameter and k a subfield of R, such that the composition k
id−→ R

π−→ R/m is an
isomorphism of k. Then:
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1. For any z ∈ R there is a unique λ ∈ k such that z − λ ∈ m.

2. For any z ∈ R and n ∈ N0 there are unique λ0, . . . , λn ∈ k and zn ∈ R such that
z = λ0 + λ1t+ · · ·+ λnt

n + znt
n+1.

3. There is a monomorphism l : Q(R) → k((t)) such that the valuations ν and νt agree,
where νt(

∑
n≥m λnt

n) = min{n ≥ m|λn 6= 0}.

Proof. Let z ∈ R and λ = π(z) ∈ k, then π(z − λ) = 0 and hence z − λ ∈ m. Let also
z − λ′ ∈ m, then λ′ − λ ∈ m and hence λ′ − λ = π(λ′ − λ) = 0. Now x ∈ m ⇔ t|x so
2 . follows immediately by induction. Now the uniqueness in 2 . implies the homomorphism
condition of the induced map l : R → k[[t]], which is injective, because for a non-zero
element z, z ∈ mn\mn+1, where n = ν(z) and so λn+1(z) 6= 0. This morphism extends to
l : Q(R) ↪→ k((t)). Now it’s clear that the valuations agree on R respectively on Im(R). For
an element z ∈ Q(R)\R write z = tkz′ with k = ν(z) < 0 and hence z′ ∈ R a unit. Now
l(z) = l(tkz′) = l(t−k)−1l(z′) = tkl(z′) and thus the valuations agree.

2.4 Topology

Definition 2.14. A non-empty topological space X is called irreducible iff any two non-
empty open sets have non-empty intersection or equivalently X cannot be written as a union
of two proper closed subsets. A subset Y of X is called irreducible iff Y is an irreducible
topological space with the induced topology.

Proposition 2.15. A non-empty open subset U of an irreducible topological space X is
irreducible and dense.

Proof. U ∪ U c = X, now U c 6= X, so U = X. Let W , V be non-empty open subsets of X,
then ∅ 6= W ∩ V ∩ U = (W ∩ U) ∩ (V ∩ U).

Proposition 2.16. The closure of an irreducible subset Y is again irreducible.

Proof. Let W,Z be closed in Y such that Y = W ∪ Z, then W ∩ Y and Z ∩ Y are closed in
Y and (W ∩ Y ) ∪ (Z ∩ Y ) = Y , so W ∩ Y = Y or Z ∩ Y = Y without loss of generality the
former, thus Y ⊆ W and, since W is closed, Y ⊆ W .

Definition 2.17. The dimension of a topological space is defined as dim(X) = sup{n ∈
N0|∃Y0 ( Y1 ( · · · ( Yn : ∀i = 0, . . . , n : Yi is a closed irreducible subset of X}.

Definition 2.18. A topological space X is called noetherian iff ({Y ⊆ X|Y is closed},⊇)
satisfies the ascending chain condition.

Proposition 2.19. A subset Y of an noetherian topological space X is again noetherian
with the induced topology.
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Proof. Let Vi ⊆ X be closed subsets such that V1∩Y ⊇ V2∩Y ⊇ · · · is a decreasing sequence
of closed subsets of Y , then V1 ⊇ V1 ∩ V2 ⊇ V1 ∩ V2 ∩ V3 ⊇ · · · is a decreasing sequence of
closed subsets of X, thus eventually constant, and Y ∩

⋂n
i=1 Vn = Vn ∩ Y .

Proposition 2.20. In a noetherian topological space every non-empty closed subset Y is a
finite union Y = Y1 ∪ · · · ∪ Yn of closed irreducible subsets Yi. If one requires Yj 6⊇ Yi for
j 6= i, then they are uniquely determined and are called the irreducible components of Y .

Proof. See page 5 of [H77]

3 Some Algebraic Geometry

This chapter follows more or less the structure of [H77], chapter 1, but over an arbitrary
field as in [G12]. Most proofs of the former also apply to the more general setting, if not
proofs are given.

3.1 Varieties

3.1.1 Affine varieties

Let K/k be a field extension, where K is algebraically closed, and let A = k[X1, . . . , Xn] be
the polynomial ring in n variables. There are natural maps I, V :

I : P(Kn)→ P(A)

X 7→ {f ∈ A|∀(x1, . . . , xn) ∈ X : f(x1, . . . , xn) = 0}

V : P(A)→ P(Kn)

B 7→ {(x1, . . . , xn) ∈ Kn|∀f ∈ B : f(x1, . . . , xn) = 0}

Proposition 3.1. The following holds:

1. V (B) ∪ V (B′) = V (B ·B′), ∀B,B′ ⊆ A.

2.
⋂
j∈J V (Bj) = V

(⋃
j∈J Bj

)
, ∀Bj ⊆ A.

3. V (∅) = Kn.

4. V ({1}) = ∅.

5. V (B) = V (〈B〉) = V (r(〈B〉)), ∀B ⊆ A.

6. I(X) is a radical ideal in A, ∀X ⊆ Kn.

1 . through 4 . imply that we can equip Kn with the topology, where the closed sets are
exactly the sets of the form V (B) for some B ⊆ A. This topology shall be referred to as the
Zariski topology induced by k. 5 . and 6 . imply that we can restrict the domain of V and the
co-domain of I to ideals of A or even radical ideals of A.
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Proposition 3.2. The pair (V, I) forms a Galois connection that is:

1. B1 ⊆ B2 ⇒ V (B1) ⊇ V (B2), ∀B1, B2 ⊆ A.

2. X1 ⊆ X2 ⇒ I(X1) ⊇ I(X2), ∀X1, X2 ⊆ Kn.

3. B ⊆ I(V (B)), ∀B ⊆ A.

4. X ⊆ V (I(X)), ∀X ⊆ Kn.

Proposition 3.3. It follows that:

1. I ◦ V ◦ I = I.

2. V ◦ I ◦ V = V .

3. The restricted maps

Rk := {B ⊆ A|∃X ⊆ Kn : B = I(X)} V−⇀↽−
I
{X ⊆ Kn|∃B ⊆ A : X = V (B)} =: Ak

are inverse to each other.

Definition 3.4. The elements of Ak shall be called affine k-algebraic sets.

Proposition 3.5. V (I(X)) = X, ∀X ⊆ Kn, where X denotes the closure of X in the
Zariski topology induced by k.

Theorem 3.6 (Hilbert’s Nullstellensatz). Let a ⊆ A be an ideal, then I(V (a)) = r(a).

Proof. We shall use weak form of Hilbert’s Nullstellensatz, which states that if k and E
are fields and E is a finitely generated k-algebra, then E is an algebraic extension of k.
A proof can be found on page 82 of [AM94]. Thus if one is given a proper ideal a, then
V (a) is non-empty, because the extension of a to K[X1, . . . , Xn] is again proper: extend
k1 = 1 to a basis (ki) of K/k, let

∑
j fjaj ∈ ae, fj ∈ K[X1, . . . , Xn] and aj ∈ a, where each

fj =
∑

i kifij, fij ∈ k[X1, . . . , Xn], then
∑

j fjaj ∈ k[X1, . . . , Xn] iff
∑

j fijaj = 0 for all i 6= 1,
thus aec = a. So one can take a maximal ideal m containing ae. Then K[X1, . . . , Xn] /m is
an algebraic extension of K, thus is isomorphic to K, and the image of X1, . . . , Xn defines
a point, which is a common vanishing point of all elements of m ⊇ a. Now we are going to
use Rabinowitsch’s trick. Suppose f ∈ I(V (a)), by introducing a new variable X0 one sees
that the ideal generated by a and 1−X0f does not have a common vanishing point, so they
generate the whole ring. Thus one gets an equation 1 = g0(1 −X0f) +

∑k
i=1 gifk for some

gi ∈ k[X0, . . . , Xn] and fi ∈ a. Setting X0 = 1
f

and clearing denominators one gets f ∈ r(a).
The reverse inclusion is trivial.

Corollary 3.7. There is a one-to-one correspondence between affine k-algebraic sets of Kn

and radical ideals in A.
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Definition 3.8. An affine k-algebraic set X is called an affine k-variety iff X is irreducible
in the Zariski topology induced by k.

Proposition 3.9. There is a one-to-one correspondence between affine k-varieties of Kn

and prime ideals in A.

Definition 3.10. An affine k-algebraic set X is called an affine variety, if it is absolutely
irreducible, that is X is irreducible in the Zariski topology induced by K, in other words X
is an affine K-variety. Note that in this case X is necessarily an affine k-variety.

Definition 3.11. Let X be an affine k-variety. We define the affine coordinate ring to be
A[X] := A/ I(X), which is an integral domain. By A(X) we denote the quotient field of
A[X] and also we define X(L) := X ∩Ln, where L is a subfield of K, to be the points on X
with coordinates in L.

3.1.2 Projective varieties

Definition 3.12. The n-dimensional projective space over a field K is defined as: Pn(K) :=
(Kn+1\{0}) /K×, where the quotient has to be understood as (a0, . . . , an) ∼ (λa0, . . . , λan),
λ ∈ K×. By (a0 : · · · : an) we denote the class of (a0, . . . , an).

Every homogeneous polynomial f in S = k[X0, . . . , Xn] defines a function f : Pn(K) →
{0, 1}, where f(a0 : · · · : an) = 0 ⇔ f(a0, . . . , an) = 0. Let Sh =

⋃
d∈N0

Sd denote the
homogeneous elements of S. Then one has again maps:

I : P(Pn(K))→ P(Sh)

X 7→ {f ∈ Sh|∀(x0 : · · · : xn) ∈ X : f(x1 : · · · : xn) = 0}

V : P(Sh)→ P(Pn(K))

B 7→ {(x0 : · · · : xn) ∈ Pn(K)|∀f ∈ B : f(x0 : · · · : xn) = 0}

Proposition 3.13. The following holds:

1. V (B) ∪ V (B′) = V (B ·B′), ∀B,B′ ⊆ Sh.

2.
⋂
j∈J V (Bj) = V

(⋃
j∈J Bj

)
, ∀Bj ⊆ Sh.

3. V (∅) = Pn(K).

4. V ({1}) = ∅.

So we can equip Pn(K) with the topology, where the closed sets are exactly the sets of the
form V (B) for some B ⊆ Sh. This topology is referred to as the Zariski topology induced by
k and the closed sets are called projective k-algebraic sets.

Definition 3.14. An ideal a of a graded ring R =
⊕

d∈ZRd is called homogeneous iff
a =

⊕
d∈Z ad =

⊕
d∈Z(a ∩Rd).
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Proposition 3.15. An ideal is homogeneous iff it can be generated by homogeneous elements.
The sum, product, intersection and radical of homogeneous ideals are again homogeneous and
a homogeneous ideal a is prime iff f, g ∈ a⇒ f ∈ a or g ∈ a for homogeneous elements f, g.

Let Ih denote the set of homogeneous ideals of S. The domain of V can be extended to
Ih, by setting V (a) = V (a ∩ Sh) and also the co-domain of I can be extended to Ih by
composition of 〈 · 〉.

Proposition 3.16. The following holds: V (B) = V (〈B〉), ∀B ⊆ Sh.

So we can restrict to homogeneous ideals.

Proposition 3.17. The following holds:

1. V, I form a Galois connection.

2. For a homogeneous ideal a: V (a) = ∅ ⇔ r(a) = S or S+

(
:=
⊕

d∈N Sd
)
⇔ ∃d ∈ N :

Sd ⊆ a.

3. V (a) 6= ∅ ⇒ I(V (a)) = r(a), ∀a ∈ Ih.

4. V (I(X)) = X, ∀X ⊆ Pn(K).

Definition 3.18. A projective k-algebraic set X is called a projective k-variety iff X is
irreducible in the Zariski topology induced by k.

Proposition 3.19. There is a one-to-one correspondence between projective k-varieties of
Pn(K) and homogeneous prime ideals in S.

Definition 3.20. A projective k-algebraic set X is called a projective variety, if it is ab-
solutely irreducible, that is X is irreducible in the Zariski topology induced by K; in other
words X is a projective K-variety. Note that in this case X is necessarily a projective
k-variety.

Definition 3.21. Let X be a projective k-variety. We define the homogeneous coordinate
ring to be S[X] := S / I(X), which is a graded integral domain. We also define X(L) :=
X ∩ Pn(L) for L a subfield of K to be the points on X with coordinates in L, where Pn(L)
is embedded in Pn(K) in the usual way: (a0 : · · · : an) 7→ (a0 : · · · : an).

Definition 3.22. An affine/projective (k-)variety of dimension 1 is called an affine/projective
(k-)curve.

Definition 3.23. An affine/projective K-variety Y is defined over a subfield L of K if one
can find a set of generators of I(X) ⊆ K[X1, . . . , Xn], respectively K[X0, . . . , Xn]h, which
are in L[X1, . . . , Xn], respectively L[X0, . . . , Xn]h.
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3.2 Functions, morphisms and rational maps

Definition 3.24. Let X be an affine/projective k-variety, V a non-empty open subset of
X. A function f : V → K is called regular at a point P ∈ V iff there exists an open
neighborhood U of P and polynomials g, h ∈ A, respectively Sd for some d ∈ N0, such that
h is nowhere zero on U and f = g/h on U . A function is called regular on V iff it is regular
at every point in V .

Definition 3.25. A morphism between varieties (of any kind) X, Y is a continuous map
ϕ : X → Y such that for every open subset V ⊆ Y and any regular function f : V → K
f ◦ ϕ : ϕ−1(V )→ K is a regular map.

Definition 3.26. Let X be a k-variety. By Ok(X) we denote the set of all regular functions
on X. Given a point P on X, we define the local ring OkP at P on X to be the ring of
germs of regular functions on X near P , that is the set of pairs (U, f), where U is an open
neighborhood of P and f a regular function on U , and two elements (U, f) and (V, g) are
identified iff there is an open neighborhood W ⊆ U ∩ V of P such that f = g on W . OkP is
a local ring where the maximal ideal is the set of regular functions vanishing at P , because
if a regular function is not vanishing at P , then its inverse is a regular function defined if
necessary on a smaller neighborhood of P .

Definition 3.27. Let X be a k-variety. The function field k(X) is defined as the set of
equivalence classes (U, f), where U ⊆ X is a non-empty open subset and f is a regular
function on U , and where we identify two pairs (U, f), (V, g) iff there exists a non-empty
open subset W ⊆ U ∩ V such that f = g on W . Note that operations can be defined,
since X being irreducible implies that any two non-empty open subsets have non-empty
intersection.

Theorem 3.28. Let X be an affine k-variety with affine coordinate ring A[X], then the
following holds:

1. Ok(X) ∼= A[X].

2. Given a point P and mp ⊆ A[X] the set of all functions vanishing at P we have
OkP ∼= A[X]mP

and if P ∈ X(k), then dimOkP = dimX.

3. k(X) ∼= A(X), the quotient field of A[X]. Moreover the transcendence degree of k(X)
is equal to dimX.

If S is a graded ring and p a homogeneous ideal, then we define S(p) to be the set of all
elements of degree 0, when localizing at the homogeneous elements of S not in p and the
grading is extended in the usual way: deg(f/g) = deg(f)−deg(g) for homogeneous elements
f, g.

Theorem 3.29. Let X be a projective k-variety, with homogeneous coordinate ring S[X],
then the following holds:
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1. Given a point P and mp ⊆ S[X] the ideal generated by all the homogeneous polynomials
f ∈ S[X] vanishing at P we have OkP ∼= S[X](mP ).

2. k(X) ∼= S[X]((0)).

Definition 3.30. An open neighborhood of a point P in a variety Y , which is isomorphic
to an affine variety, is called an affine neighborhood.

Example. Let Y be a projective variety, P a point in Y and f ∈ Sh of degree 1 (f defines
a hyperplane), such that f(P ) 6= 0, then Y \V (f) is an affine neighborhood of P .

Proof. Clearly Y \V (f) is an open neighborhood of P . Suppose Y ⊆ Pn(K), and consider
the following map and its inverse:

ϕ : Pn(K)\V (f)→ V (f − 1) ⊆ Kn+1

(a0 : · · · : an) 7→
(

a0

f(a0, . . . , an)
, . . . ,

an
f(a0, . . . , an)

)
ϕ−1 : V (f − 1) ⊆ Kn+1 → Pn(K)\V (f)

(a0, . . . , an) 7→ (a0 : · · · : an)

These are both continuous. Now Y \V (f) is irreducible (non-empty open subset of an irre-
ducible set) and so also its image, thus an affine variety. It is also easily checked, that ϕ and
ϕ−1 restricted to Y \V (f) respectively Im(Y \V (f)) are morphisms.

If k is infinite and given finitely many points, then there is always a hyperplane avoiding all
of these points. Y \V (Xi) is an affine open cover of Y and is called the standard affine cover.

Definition 3.31. Let X, Y be varieties. A rational map ϕ : X → Y is an equivalence class
of pairs (U,ϕU), where U is a non-empty open subset of X, ϕU is a morphism of U to Y and
the equivalence is given by (U,ϕU) ∼= (V, ϕV ) iff ϕU and ϕV agree on U ∩ V . A birational
map is a rational map, which admits an inverse as a rational map, in this case we say X and
Y are birationally equivalent. If a birational map has a representative, such that U = X,
then it also defines a morphism and is thus called a birational morphism.

The above example defines a birational map. If X and Y are birationally equivalent, then
by definition of a function field it is clear, that their function fields are isomorphic.

3.3 Non-singularity

Definition 3.32. Let Y be an affineK-variety defined over k and let f1, . . . , ft ∈ k[X1, . . . , Xn]
be a set of generators of I(Y ) ⊆ K[X1, . . . , Xn]. Y is called non-singular at a point P ∈ Y (k)
iff the rank of the matrix ( ∂fi

∂Xj
(P ))1≤i≤t,1≤j≤n is n − r where r is the dimension of Y . This

is independent of the choice of the set of generators
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Lemma 3.33. Let A be an integral domain, m ⊆ A a maximal ideal and n ∈ N, then

m
/
mn ∼= mAm

/
(mAm)n

Proof. Consider the map:

m→ mAm → mAm
/

(mAm)n

x 7→ x

1
7→
(x

1

)
We shall prove, that the kernel is mn and that the map is surjective. Since m is prime
a
s
∈ mAm iff a ∈ m. Also notice that for s /∈ m one has (s) + mn = A, suppose not, then it

would be contained in a maximal ideal n and one would have m = r(mn) ⊆ r(n) = n and
thus n = m and s ∈ m, a contradiction. Let x be in the kernel. Thus x

1
∈ (mAm)n and so

sx ∈ mn for some s /∈ m and we have an equation sy+m = 1, where y ∈ A and m ∈ mn and
thus mn 3 syx + mx = x, on the other hand it is clear that mn is contained in the kernel.
Now consider an element (a/s) in mAm / (mAm)n. We need to find an element y ∈ m such
that y

1
− a

s
∈ (mAm)n, but we have an equation sy + m = a, with m ∈ mn and y ∈ A, but

further a ∈ m and so since s /∈ m we have y ∈ m and thus y satisfies the condition.

Theorem 3.34. Let Y be an affine K-variety defined over k. Then Y is non-singular at a
point P ∈ Y (k) iff OkP is a regular local ring.

Definition 3.35. Let Y be a K-variety defined over k. Then Y is also a K-variety defined
over a field k ⊆ L ⊆ K. Y is called non-singular at a point P ∈ Y (K) iff the local ring OLP
at P is a regular local ring for any field k ⊆ L ⊆ K containing P . Note, since OLP depends
only on an affine neighborhood of P , the theorem implies it is sufficient that OLP is a regular
local ring for a specific field L containing P . Y is called non-singular iff Y is non-singular
at every point.

Theorem 3.36. Let C be a projective curve over an algebraically closed field K of charac-
teristic 0. Then there is a up to isomorphism unique non-singular projective curve X and a
birational morphism f from X onto C. Moreover the local rings corresponding to the points
of X are in one-to-one correspondence with the discrete valuation rings of K(C)/K and
f(Q) = P iff OKQ,X dominates OKP,C, that is OKP,C ⊆ OKQ,X and the contraction of the maximal
ideal is again the maximal ideal. We say X is a non-singular model of C.

Proof. See chapter 1 paragraph 6 of [H77], or chapter 7 of [F69] for a more constructive
proof.

3.4 Weil-divisors for curves

If we are given a non-singularK-curve Y defined over k, then every local ringOLP , k ⊆ L ⊆ K,
P ∈ Y (L), is a discrete valuation ring with respect to the valuation νLP with field of fractions
L(Y ) and residue field L.

12



Proposition 3.37. Let Y be as above, k ⊆ L ⊆ K be field and P ∈ Y (L) a point, then
νKP |L(Y ) = νLP and we write νP instead of νKP .

Proof. It is sufficient to show that a local parameter OLP is also a local parameter in OKP .
Choose an affine neighborhood of P . Let b = I(Y ) and mL,mK be the maximal ideal
corresponding to P in L[X1, . . . , Xn], K[X1, . . . , Xn] respectively and mL

P ,m
K
P the maximal

ideal corresponding to P in OLP ,OKP respectively. Now since Y is defined over k ⊆ L and
P ∈ Y (L), we can find generators f1, . . . , fm of b with coefficients in L and mL,mK are
both generated by X1 − a1, . . . , Xn − an, where P = (a1, . . . , an). Consider the following
commuting diagram:

mL
P

/(
mL
P

)2 mK
P

/(
mK
P

)2

mL
/
m2
L + b

mK
/
m2
K + b

id

o o

id

The isomorphisms are due to Lemma 3.33 and the other maps are given by the identity. We
shall prove, that the bottom map is injective. Extend k1 = 1 to a basis (kα) of K over L.
Suppose g is in the kernel, then g =

∑
pifi +

∑
qi,j(Xi − ai)(Xj − aj). Write pi =

∑
kαp

α
i

and qi,j =
∑
kαq

α
i,j, where pαi , q

α
i,j ∈ L[X1, . . . , Xn]. Then

g =
∑
α

kα

(∑
pαi fi +

∑
qαi,j(Xi − ai)(Xj − aj)

)
=
∑

p1
i fi +

∑
q1
i,j(Xi − ai)(Xj − aj)

This means g is already in the ideal m2
L + b, hence zero. Now a local parameter of OLP

corresponds to a non-zero element in mL
P /
(
mL
P

)2
and is therefore non-zero in mK

P /
(
mK
P

)2

and thus a local parameter of OKP .

Lemma 3.38. Given f ∈ K(Y )×, then νP (f) = 0 for all but finitely many points P ∈ Y .

Proof. It is enough to look at the affine case, by taking the standard affine cover. Let f = g/h
with g, h /∈ I(Y ). It suffices to show that V ((g) + I(Y )) and V ((h) + I(Y )) are both finite.
Now V ((g) + I(Y )) ( Y , which means that V ((g) + I(Y )) is a finite union of irreducible
closed subsets of dimension 0, which are single points since K is algebraically closed.

Definition 3.39. A divisor is an element of the free abelian group Div(Y ) generated by the
points P ∈ Y , thus of the form D =

∑
P nPP , where np ∈ Z and nP = 0 for all but finitely

many P . The support of such a divisor D is Supp(D) =
⋃
nP 6=0{P}. The divisor of zeros

respectively poles of D is defined as (D)0 =
∑

nP>0 nPP respectively (D)∞ =
∑

nP<0−nPP ,
such that D = (D)0 − (D)∞.

We can define a partial order on Div(Y ) by
∑

P nPP ≥
∑

P n
′
PP ⇔ ∀P ∈ Y : nP − n′P ≥ 0.
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Thanks to the Lemma 3.38 one has a morphism of abelian groups:

(·) : K(Y )× → Div(Y )

f 7→
∑
P

νP (f)P

The points for which νP (f) > 0 are called zeros (of order νP (f)) of f and the points for
which νP (f) < 0 are called poles (of order −νP (f)) of f . Divisors, which are in the image of
(·), are called principal divisors.
There is also a natural map deg : Div(Y )→ Z, which maps

∑
P nPP to

∑
P nP .

If the curve Y over an algebraically closed field K of characteristic 0 is singular, one can still
define a divisor properly just by taking the valuations (points) of a non-singular model of Y .

Proposition 3.40. The Galois group Gal(K/k) acts on Div(Y ) with the action σ(
∑

P nPP ) =∑
P nPσ(P ) for σ ∈ Gal(K/k).

Proof. If P is a point on Y , then σ(P ) is a point on Y , because all the points are given by
zeros of polynomials with coefficients in k, and it is clearly an action.

Definition 3.41. A divisor is defined over k iff it is invariant under the action of Gal(K/k).

Proposition 3.42. Every σ ∈ Gal(K/k) induces an isomorphism of local rings σ : OKP
∼−→

OKσ(P ) and one has νP (f) = νσ(P )(f
σ).

Proof. If U = Y \V (f1, . . . , fl) is an open neighborhood of P and f = g/h is a regular function
on U (by making U smaller if necessary), then fσ = gσ/hσ is regular on Uσ = V (fσ1 , . . . , f

σ
l )c

an open neighborhood of σ(P ), where we denote by gσ the image of g under the induced
morphism σ : K[X1, . . . , Xn] → K[X1, . . . , Xn], moreover σ(I(Y )) = I(Y ), because one can
find generators of the ideal in k[X1, . . . , Xn], so equivalence classes are preserved. Thus
σ induces a morphism OKP → OKσ(P ) the inverse of which is clearly given by the induced

morphism of σ−1. Let t be a local parameter at P and t′ a local parameter at σ(P ), then
νσ(P )(t

σ) = e, νP (tσ
−1

) = e′ > 0. Now t = (tσ)σ
−1

= uσ
−1

(t′σ
−1

)e = uσ
−1
u′e
′
tee
′

for some unit

u in OKσ(P ) and a unit u′ in OKP , further uσ
−1

is also a unit in OKP , so we have 1 = ee′ by

taking νP , thus e = e′ = 1 and tσ is also a local parameter in OKσ(P ).

Corollary 3.43.

σ((f)) = σ

(∑
P

νP (f)P

)
=
∑
P

νP (f)σ(P ) =
∑
P

νσ−1(P )(f)P =
∑
P

νP (fσ)P = (fσ)

.

Note that the restriction of σ to k(Y ) is the identity map, hence for f ∈ k(Y ) the divisor
(f) is defined over k.
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If P is an algebraic point over k we can define k(P ) to be the minimal field containing k and
P , in the affine case one gets that field just by adjoining the coordinates and in the projective
case one first needs to normalize a coordinate to 1 and can then adjoin the coordinates. One
can now look at the size of the orbit of P , which is exactly [k(P ) : k]s.

Now we consider a field k of characteristic 0 and K = k an algebraic closure. Let P be a point
of a non-singular curve C defined over k. L an algebraic extension of k, then νP (L(C)) = sZ
for some s ∈ N0. Clearly s ∈ N, as there is a regular function with coefficients in k, which
vanishes on P (P is algebraic over k). So 1

s
νP |L(C) is a discrete valuation of L(C).

Lemma 3.44. Assume the assumptions of above. Let P, P ′ be points on C. Then 1
s
νP |L(C) =

1
s′
νP ′ |L(C) iff P and P ′ are conjugate over L.

Proof. If they are conjugate over L, then clearly they define the same discrete valuation, be-
cause of Proposition 3.42. Now suppose they are equal and reduce to an affine neighborhood
of P and P ′. Let P = (a1, . . . , an), P ′ = (a′1, . . . , a

′
n) and Q ∈ L[X1, . . . , Xn] a polynomial of

degree 1 such that Q(P ) is a primitive element of L(P )/L and Q(P ′) a primitive element of
L(P ′)/L. Let f be the minimal polynomial of Q(P ) over L, then (f ◦ Q)(P ) = 0 and thus
(f ◦ Q)(P ′) = 0, which means Q(P ) and Q(P ′) are conjugate. Now let fi be a polynomial
such that fi(Q(P )) = ai, then (fi ◦ Q − Xi)(P ) = 0 and thus (fi ◦ Q − Xi)(P

′) = 0. So if
Q(P ′) = σ(Q(P )), then a′i = σ(ai) therefore P and P ′ are conjugate over L.

Proposition 3.45. There is a regular function f ∈ k(C) such that νP (f) = 1.

Proof. Let L be the minimal field containing P . With the use of Proposition 2.11 and Lemma
3.44, there is a g ∈ L(C) such that νP (g) = 1 and νσ(P )(g) = 0 for σ(P ) 6= P . Let f be the
product of the conjugates gσ of g, now since L is minimal, it follows that σ(P ) 6= P ⇒ gσ 6= g.
Also since k is perfect, f ∈ k(C) and because of proposition 3.42 it follows νP (f) = 1.

Proposition 3.46. Let f ∈ k(C)\k and P1, . . . , Pr ∈ C be zeros of f such that their discrete
valuations do not agree on k(C), then:

r∑
i=1

νPi
(f)n(Pi) ≤ [k(C) : k(f)],

where n(Pi) = [kPi
: k] and kPi

the residue field of νPi
|k(C).

Proof. See page 30/45 of [I93] or page 13 of [S08].

Corollary 3.47. Let f ∈ k(C)\k, then:

deg(f)0, deg(f)∞ ≤ [k(C) : k(f)].

Proof. A point P has [k(P ) : k] conjugates over k, where k(P ) is the minimal field containing

P . Also the ring inclusions OkP ⊆ O
k(P )
P ∩k(C) ⊆ Ok(P )

P factored at their maximal ideal gives
k(P ) ⊆ kP ⊆ k(P ). Thus the residue field is k(P ) and the result follows for deg(f)0 by
Proposition 3.42 and the previous Proposition. Also deg(f)∞ = deg( 1

f
)0 and k(f) = k( 1

f
).

So it follows also for deg(f)∞.
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Definition 3.48. Given a curve Y over an algebraically closed field K of characteristic 0
and a divisor D one can define a K-vector space L(D) = {f ∈ K(Y )×|(f) + D ≥ 0} ∪ {0}.
Denote by l(D) = dimK(L(D)) its dimension.

Theorem 3.49 (Riemann’s Inequality). There is a constant g such that l(D) ≥ deg(D) +
1− g for all divisors D. The smallest such constant is called the genus of K(Y ).

Proof. See page 196 of Fulton, Algebraic Curves [F69].
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4 Runge’s Theorem and Applications

In this section we consider the field extension Q/Q, where Q is an algebraic closure of Q.

Theorem 4.1. Let C be an absolutely irreducible non-singular projective curve defined over
Q, and f ∈ Q(C) have a pole Q′ such that −νQ′(f)[Q(Q′) : Q] < deg(f)∞. Then there are
only finitely many rational points P ∈ C(Q) such that f(P ) ∈ Z.

Since f is in Q(C), we have that (f) and a fortiori (f)∞ is defined over Q and thus (f)∞
is of the form

∑
Q−νQ(f)

∑
σ∈ΣQ

σ(Q), where Q runs over a system of representatives of
poles of the disjoint orbits under the action of the Galois group and ΣQ is a minimal set
such that the set {σ(Q)|σ ∈ ΣQ} is exactly the orbit of Q. Then ΣQ has the size [Q(Q) : Q].
So the condition “There is a pole Q′ of (f) such that −νQ′(f)[Q(Q′) : Q] < deg(f)∞” is
equivalent to “The pole divisor of (f) splits into two positive divisors with disjoint support
defined over Q” moreover it is equivalent to “f /∈ Q and every pole Q of (f) satisfies
−νQ(f)[Q(Q) : Q] < deg(f)∞” and one has the following equivalent version:

Theorem 4.2. Let C be an absolutely irreducible non-singular projective curve defined over
Q, and f ∈ Q(C)\Q be such that the pole divisor splits into two positive divisors with disjoint
support defined over Q. Then there are only finitely many rational points P ∈ C(Q) such
that f(P ) ∈ Z.

Proof. Let R ∈ Q be a pole of f , k = Q(R) be the minimal field containing R and u ∈ OkR
be a local parameter. Let g be a primitive element of Q(C)/Q(f), which we can assume to
be integral over Z[f ] (Subring of Q(f) generated by Z and f). Now denote by n,m the order
at R of f, g respectively and d = [Q(C) : Q(f)]. By Proposition 2.13 we can develop f, g
into Laurent series

∑
i≥n λiu

i,
∑

i≥m µiu
i ∈ k((u)). We consider all rational functions of the

form:
F (f, g) = A0(f) + A1(f)g + · · ·+ Ad−1(f)gd−1,

where all Ai are polynomials in Q[X] of degree smaller than some constant M . They form
a vector space of dimension dM . We now like to impose that F (f, g) is in OkR and moreover
F (f, g)(R) = 0, this corresponds to max{nM, nM + (d − 1)m} linear equations over k or
max{nM, nM + (d− 1)m}[k : Q] equations over Q. Since n[k : Q] < deg(f)∞ ≤ d holds, for
a sufficiently large M max{nM, nM + (d− 1)m}[k : Q] < dM holds and thus there exists a
non-trivial solution G′(X, Y ), which we then can multiply by some non-zero integer q, such
that G(X, Y ) = qG′(X, Y ) ∈ Z[X, Y ]; put HR = G(f, g). Consider a point P ∈ C(Q) such
that f(P ) ∈ Z, then g(P ) is integral over Z and in Q, hence g(P ) ∈ Z. Thus HR(P ) ∈ Z.
HR is regular at P and thus defines a continuous function on a neighborhood of R in Pn(R)
(standard topology), which means we can find an open neighborhood UR of R such that
|HR(Q)| < 1 for all Q ∈ UR.
Now complement of the union of the UR over all poles intersected with the real points of
the curve C(R) is a closed, thus compact, subset of C(R) on which f is continuous and thus
bounded by some constant say B. Now let P ∈ C(Q) be a point such that f(P ) ∈ Z, if
P ∈ UR for some pole R, then H ′R(P ) = 0, which has only finitely many solutions. If not
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then Z 3 |f(P )| < B, each of which has only finitely many solutions. Hence the result
follows.

Note that the proof of the theorem is dependent on the field of definition of the positive
divisors, in which (f)∞ can split, which indicates that the theorem is not geometrical.

Proposition 4.3. Let f ∈ Z[X, Y ] be an irreducible polynomial such that its highest homo-
geneous part is not a constant times a power of an irreducible polynomial over Q, then the
equation f(X, Y ) = 0 has only finitely many solutions in Z2.

Proof. First consider the case f is not absolutely irreducible, i.e. f factors in Q[X, Y ]. Then
it already completely factors in some finite extension k of Q. Take a basis (ai)i=1,...,n of k/Q
and an absolutely irreducible factor g and write g =

∑
aigi with gi ∈ Q[X, Y ]. Now an

integral zero (x, y) must satisfy gi(x, y) = 0 for all i. This can happen only finitely many
times, because the greatest common divisor of the gi’s over Q[X, Y ] is 1 (else f would not be
irreducible), so the greatest common divisor over Q[X, Y ] must also be 1. This then further
implies, that V (g1, . . . , gn) cannot have an irreducible component of dimension ≥ 1, suppose
it has then V (g1, . . . , gn) ⊇ V (p) ⇒ (g1, . . . , gn) ⊆ r(g1, . . . , gn) ⊆ p, for some prime p of
height ≤ 1. If the height were 0, then p = (0) a contradiction, else take an arbitrary element
of p and factor it in absolutely irreducible factors, then at least one of them, say h, needs
to be in p, then (0) ( (h) ⊆ p is a chain of primes and thus (h) = p and h|gi for all i a
contradiction. This now implies that V (g1, . . . , gn) contains at most finitely many points.
If f is absolutely irreducible, then the homogenization fh(X, Y, Z) = Zdeg(f)f(X/Z, Y/Z)
gives rise to an absolutely irreducible projective curve C defined over Q. The highest degree
of f factors as c

∏r
i=1 fi(X, Y )ei where c ∈ Q×, r, ei ∈ N, r > 1, fi(X, Y ) ∈ Z[X, Y ] primitive,

irreducible and pairwise relatively prime in Q[X, Y ]. Now fi factors as ci
∏si

j=1(kijX − k′ijY )

in Q[X, Y ] with not both kij, k
′
ij zero for any i, j and kijk

′
mn− k′ijkmn 6= 0 for (i, j) 6= (m,n).

There is an integer k, such that X − kY 6 | fi(X, Y ) (one of {0, 1, . . . , r} will work). Let
h = (X − kY )/Z ∈ Q(C). Now the points (x, y) ∈ Z2 we are interested in correspond to the
points (x : y : 1) and satisfy h(x : y : 1) ∈ Z. Let l : X → C be a non-singular model. We
can look at the poles of h in X . All poles Q must satisfy Z(l(Q)) = 0, so l(Q) = (k′ij : kij : 0)
for some i, j. If l(Q) = (k′ij : kij : 0), then (X − kY )(l(Q)) 6= 0 thus the poles are exactly
l−1({(k′ij : kij : 0)|i ∈ {1, . . . , r}, j ∈ {1, . . . , si}}). Define the divisors

Di =
∑
Q∈X

l(Q)∈{(k′mn:kmn:0)|m 6=i}

−Q.

It’s clear that 0 > deg(Di). So by Riemann’s inequality we can find a Fi ∈ Q(C)\Q, such
that (Fi) ≥ NDi for some sufficiently large integer N . Consider the conjugate functions
F σ
i , σ ∈ Gal(Q/Q). Similarly to Proposition 3.42 every automorphism of Q(C) gives an

automorphism of X such that the valuations commute with the automorphism: νσQ(g) =

νQ(gσ
−1

) is a valuation on Q(C) and so equal to eνP for some e ∈ N and a point P ∈ X and
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thus define σ(Q) = P and it follows again that e = 1 and νQ(g) = νσ(Q)(g
σ). One can also

check that this is an automorphism of X , but that is not needed here. Moreover one has:

l(Q) = P ⇔ OQ
Q,X dominates OQ

P,C ⇔ O
Q
σ(Q),X dominates OQ

σ(P ),C ⇔ l(σ(Q)) = σ(P ).

Thus we conclude that l ◦ σ = σ ◦ l and further that (F σ
i ) ≥ NDi, because l(Supp(Di)) =

σ(l(Supp(Di))). There are only finitely many conjugates of Fi because all the coefficients
of Fi are already in some finite field extension of Q. Then all of the elementary symmetric
polynomials eji of the conjugates of Fi satisfy (eji ) ≥ N ′Di for some maybe larger positive
integer N ′ and they are in Q(C). Not all can be in Q or else Fi would be algebraic over Q,
which is not possible by definition. Denote by ei one which is not in Q. All valuations of Q(h)
are induced by the valuations of Q(C), which correspond to the points of X . Consider the
valuation νP , P /∈ Supp((h)∞), then νP is not extending the valuation ν∞ of Q(h), because
νP (h) ≥ 0 and ν∞(h) = −1, and νP (ei) ≥ 0. Also the valuations corresponding to the
points of Supp((h)∞) are extending the valuation ν∞. Since Q(C)/Q(h) is a finite extension,
it follows that the minimal polynomial of ei has coefficients in Q[h] (see page 27 of [I93]).
Moreover since C is defined over Q one can look at the minimal polynomial with a basis of
Q/Q including 1 and take the part with basis element 1, this is an equation, which shows
that ei is integral over Q[h]. Replacing ei by a non-zero multiple, we can assume that ei is
integral over Z[h]. For every pole Q ∈ X of h there is an i such that ei is regular on Q.
So take an open neighborhood UQ in X (C) (topology induced by the standard topology of
Pn(C)) of Q such that |ei(Q) − ei(Q′)| < 1

2
∀Q′ ∈ UQ and ei is regular on l(UQ) except for

maybe l(Q). On the complement of the union of the sets (UQ)Q pole of h h is bounded. Let
R = (x : y : 1) be a point in C with x, y ∈ Z. If R ∈ l(UQ) for some Q, then ei(S) = ei(R) ∈ Z
for any point S such that l(S) = R, this has only finitely many solutions, else h(S) = h(R)
is bounded, which has also only finitely many solutions.

If one can get a grip at these functions around the poles, one can actually get a bound on
the absolute value of the zeros. This has been done with the use of Puiseux series in a paper
of Hilliker and Straus [HS83].

The theorem can be used for equations of the form Y d = Xd + c for d ≥ 2 and c 6= 0, but
not X3 − 2Y 3 = 1. So how does it compare to Thue’s theorem? Regarding equations of
the form f(X, Y ) = c, where f is homogenous, Thue’s theorem needs an irreducible factor
of f(X, Y ) of degree ≥ 3, whereas Runge’s theorem needs f(X, Y ) − c to irreducible and
f(X, Y ) to factor into two non-constant relatively prime polynomials or f(X, Y ) needs a
factor g(X, Y ) such that g(X, Y ) factors into two non-constant relatively prime polynomials
and g(X, Y ) − k must be irreducible for any divisor k of c. So the conditions are fairly
different even though close. Also one may not disregard the advantage of Runge’s theorem
of being effective.

Example. All integer solutions to X(X − 1)(X − 2)(3X − 4) = Y (Y − 1)(Y − 2)(3Y − 1)
are exactly those with X, Y ∈ {0, 1, 2}.
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Proof. First we make the substitution X − 1 → X and Y − 1 → Y , in order to keep
the coefficients small, so we must find the integer solutions to F (X, Y ) = X(X − 1)(X +
1)(3X − 1) − Y (Y − 1)(Y + 1)(3Y + 2) = 0. The polynomial of highest degree of F (X, Y )
is 3(X4 − Y 4) = 3(X − Y )(X + Y )(X2 + Y 2) = 3(X − Y )(X + Y )(X + iY )(X − iY ). The
question arises whether F (X, Y ) is reducible, irreducible over Q or absolutely irreducible.
Suppose either (X − P (Y )) or (Y − P (X)) is a factor, then clearly deg(P ) = 1, so suppose
(X − aY − b) is a factor, by plugging aY + b in for X and comparing the polynomial of
highest degree one finds a ∈ {−1, 1, i,−i}. If one sets Y = −1, 0, 1,−2

3
one finds:

0 = (−a+ b)(−a+ b− 1)(−a+ b+ 1)(−3a+ 3b− 1),

0 = b(b− 1)(b+ 1)(3b− 1),

0 = (a+ b)(a+ b− 1)(a+ b+ 1)(3a+ 3b− 1),

0 = (−2

3
a+ b)(−2

3
a+ b− 1)(−2

3
a+ b+ 1)(−2a+ 3b− 1).

So b ∈ {−1, 0, 1, 1
3
}, if b = −1, 0 then the last equation cannot be satisfied. If b = 1, then

the last equation implies a = 1, so the third equation is not satisfied. If b = 1
3
, then the

first equation cannot be satisfied. So one is left with the case F (X, Y ) is the product of two
absolutely irreducible factors of degree 2. Again by comparing the polynomial of highest
degree one finds, that the polynomial of highest degree of the factors must be one of the
pairs (X2−Y 2, X2 +Y 2), (X2 +(−1+ i)XY − iY 2, X2 +(1− i)XY − iY 2), (X2 +(1+ i)XY +
iY 2, X2 + (−1 − i)XY + iY 2). In the latter cases the factors would have to be conjugate,
which they are not. Consider the first case:

F (X, Y ) = (X2 − Y 2 + aX + bY + c)(3X2 + 3Y 2 + dX + eY + f).

Looking at the coefficient of X3 and XY 2, one finds 3a + d = −1 and 3a − d = 0, so
a = −1

6
, d = −1

2
. Further by looking at the coefficient of X2 and X one finds ad+3c+f = −3

and af + cd = 1, so 3c + f = −3 − 1
12

and 3c + f = −6 a contradiction. So F (X, Y ) is
absolutely irreducible.
We can define an absolutely irreducible projective curve defined over Q by the equation
F h(X, Y, Z) = Z4F (X/Z, Y/Z). We choose the function h = X/Z. Now the only interesting
poles are those in R, so define:

f1 =
X − Y
Z

=
X3 + 2Y 3 + 3X2Z − 3Y 2Z −XZ2 − 2Y Z2

3(X + Y )(X2 + Y 2)
,

f2 =
X + Y

Z
=
X3 + 2Y 3 + 3X2Z − 3Y 2Z −XZ2 − 2Y Z2

3(X − Y )(X2 + Y 2)
.

These are the desired functions at the poles (1 : 1 : 0) and (1 : −1 : 0). It remains to find
positive integers n1, n2 such that n1f1, n2f2 are integral over Z[h]. We have F (X/Z, Y/Z) = 0
and of course h = X/Z and Y/Z = h− f1 = f2 − h. Thus we find:

0 = 3f 4
1 − 2(6h+ 1)f 3

1 + 3(6h2 + 2h− 1)f 2
1 − 2(6h3 + 3h2 − 3h− 1)f1 + 3h(h2 − 1),

0 = 3f 4
2 − 2(6h− 1)f 3

2 + 3(6h2 − 2h− 1)f 2
2 − 2(6h3 − 3h2 − 3h+ 1)f2 − h(h2 − 1).
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Thus we can choose n1 = n2 = 3 (even though in this example n1 = n2 = 1 is sufficient for
the points of interest). Now 3f1(1 : 1 : 0) = 3

4
and 3f2(1 : −1 : 0) = −1

4
. Lets consider the

pole (1 : 1 : 0) first:

G1(W,Z) = 12f1(1 : W + 1 : Z)− 3 =
5W 3 + 12(1− Z)W 2 + 2(3− 12Z − 4Z2)W − 12Z2

(2 +W )(2 + 2W +W 2)
.

So for |W | < 1
2

we have:

|G1(W,Z)| ≤ 5|W |3 + 12(1 + |Z|)|W |2 + 2(3 + 12|Z|+ 4|Z|2)|W |+ 12|Z|2

(2− |W |)(2− 2|W | − |W |2)
,

which is increasing in |W |, |Z| and the value at |W | = |Z| = 3
7

is smaller than 9. So the
first neighborhood U1 = {(1 : Y : Z) ∈ C(R)| |Y − 1| < 3

7
, |Z| < 3

7
} is found: If (x, y) is an

integral solution, then (x : y : 1) ∈ U1 implies 3(x− y) ∈ {−1, 0, 1, 2}, so x = y and further
x = y ∈ {−1, 0, 1}. Similarly for the pole (1 : −1 : 0):

G2(W,Z) = 12f2(1 : W − 1 : Z) + 1 =
7W 3 − 4(5 + 3Z)W 2 + 2(9 + 12Z − 4Z2)W + 4Z2

(2−W )(2− 2W +W 2)
.

For |W | < 1
2

one has again:

|G2(W,Z)| ≤ 7|W |3 + 4(5 + 3|Z|)|W |2 + 2(9 + 12|Z|+ 4|Z|2)|W |+ 4|Z|2

(2− |W |)(2− 2|W | − |W |2)
,

which is increasing in |W |, |Z| and the value at |W | = |Z| = 2
5

is smaller than 10. This
defines then the second neighborhood U2 = {(1 : Y : Z) ∈ C(Q)| |Y − 1| < 2

5
, |Z| < 2

5
}:

If (x, y) is an integral solution then (x : y : 1) ∈ U1 implies 3(x + y) ∈ {−2,−1, 0, 1, 2},
so x = −y and further x = −y ∈ {−1, 0, 1}. Now C(R)\(U1 ∪ U2) is already closed thus
compact set on which h is continuous, because it does not contain its poles (that’s why the
only interesting poles are those in R). Suppose one has a point (x : y : 1) not in U1 nor in
U2, then either x = 0 or |1/x| ≥ 2

5
or |(y− x)/x| ≥ 2

5
and |(y + x)/x| ≥ 3

7
. We deal with the

last case first, put w = y/x and |x| ≥ 1, by manipulating the equation one gets:

|x| =
∣∣1 + 2w3 + 1

x
(3− 3w2)− 1

x2
(1 + 2w)

∣∣
3|w4 − 1|

≤ 5 + 2|w|+ 3|w|2 + 2|w|3

3|w4 − 1|
.

Now if w ≥ 1, then w ≥ 7
5
, if w ≤ −1 then w ≤ −10

7
. So if |w| ≥ 1 then |w| ≥ 7

5
and

therefore:

|x| ≤ 5 + 2|w|+ 3|w|2 + 2|w|3

3(w4 − 1)
≤ 5 + 7w4

3(w4 − 1)
=

7

3
+

4

w4 − 1
< 4.

If w < 1, then w ≤ 3
5
, if w > −1 then w ≥ −4

7
. So if |w| < 1, then |w| ≤ 3

5
and therefore:

|x| ≤ 5 + 2|w|+ 3|w|2 + 2|w|3

3(1− w4)
< 3.
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So it remains to check, when −3 ≤ x ≤ 3. Which is done by brute force: y must be a divisor
of x(x − 1)(x + 1)(3x − 1) and if x ∈ {−1, 0, 1} then it is trivial. We conclude that all the
integral solutions are exactly those with x, y ∈ {−1, 0, 1}.

One can easily, but with some work, extend the above demonstration of Runge’s method to
bound the integer solutions, if the highest degree has only zeros in Q of multiplicity 1 or in
C\R. The next proposition is certainly related to that case, but another method for finding
the functions around the poles is used.

Proposition 4.4. Let f ∈ Q[X] be a polynomial of degree b and leading coefficient l. Suppose
f is not a perfect power and a, q are positive integers such that q| gcd(a, b) and q > 1 and
l is a q-th power. Then the equation Y a = f(X) has only finitely many integral solutions
(x, y) ∈ Z2 and their absolute values are bounded by some effective computable constant.

Proof. By putting Z = Y
a
q it suffices to look at the case 1 < a = q|b (since only more solu-

tions may occur).Let b = dq, f(X) =
∑dq

i=0 aiX
qd−i with a0 = cq, without loss of generality

c = p
s

with p, s ∈ N and gcd(p, s) = 1 (if 2|q just replace c by −c and if 2 6 | q multiply the equa-
tion by −1), D a common denominator of the coefficients of f and h = max{ai|i = 0, . . . , qd}.
By Taylor’s theorem:

(1 + x)α =
n∑
i=0

(α
i

)
xi + rn(x)

with Cauchy’s error estimate

rn(x) = (n+ 1)

(
α

n+ 1

)
(1 + ξ)α−n−1(x− ξ)nx

for some ξ between 0 and x. For |x| < 1 we have∣∣∣∣x− ξ1 + ξ

∣∣∣∣ ≤ |x| − |ξ|1− |ξ|
= 1− 1− |x|

1− |ξ|
≤ 1− (1− |x|) = |x|

and so
|rn(x)| ≤

∣∣∣α(1− α

1

)
· · · · ·

(
1− α

n

)∣∣∣ (1 + ξ)α−1|x|n+1. (1)

Going back to the original equation, if X 6= 0 we have:

Y = cXd

(
1 +

dq∑
i=1

fi
cq
X−i

) 1
q

= cXd

d∑
i=0

( 1
q

i

)( dq∑
j=1

fi
cq
X−j

)i

+ cXdrd

= cXd +
d∑
i=1

biX
d−i

︸ ︷︷ ︸
g(X)

+

d2q∑
i=d+1

biX
d−i

︸ ︷︷ ︸
h(X)

+ cXdrd︸ ︷︷ ︸
h′(X)
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with

|bm| ≤ c

d∑
i=1

∣∣∣∣( 1
q

i

)∣∣∣∣ ∑
k1,...,ki∈{1,...,dq}
k1+k2+···+ki=m

i∏
n=1

∣∣∣∣fkicq
∣∣∣∣


≤ c

d∑
i=1

(
1 · (dq)i ·

(
h

cq

)i)

≤ 2c

(
dqh

cq

)d
.

(2)

Now for x, y ∈ Z we have that g(X) ∈ (pqdDd)−1Z[X] and so if |h(x) + h′(x)| < (pqdDd)−1,
we must have y = g(x). For |x| ≥ 1 we have by (2):

|h(x)| ≤ 2cd(dq − 1)

(
dqh

cq

)d
|x|−1. (3)

For |x| > max
{

1, dqh
cq

}
we have:∣∣∣∣∣
dq∑
i=1

fi
cq
x−i

∣∣∣∣∣ ≤
dq∑
i=1

∣∣∣∣ficq
∣∣∣∣ · |x|−i ≤ dqh

cq
|x|−1 < 1.

So we can apply (1) to estimate |h′(x)|. For |x| > max
{

1, 2dqh
cq

}
we have

|h′(x)| ≤ c|x|d1

q
(1 + ξ)

1−q
q

∣∣∣∣∣
dq∑
i=1

fi
cq
x−i

∣∣∣∣∣
d+1

≤ 2c

q

(
dqh

cq

)d+1

|x|−1.

(4)

Now (3) and (4) imply for |x| > max
{

1, 2dqh
cq

}
:

|h(x) + h′(x)| ≤ 2cd

(
dqh

cq

)d
(dq + h)|x|−1.

That means for |x| > 2cd (dqhDq+1)
d

(dq + h) we have y = g(x). Now g(X)q 6= f(X),
therefore we are now interested in the size of the roots of t(X) = g(X)q − f(X). First
notice that (pqD)dqt(X) ∈ Z[X] and that the coefficients have absolute value of at most
(d+ 1)q(2c)q (dqh/cq)dq + h. Now for a polynomial

∑n
i=0 aiX

i ∈ Z[X] the absolute values of
the roots are bounded by max{|ai|}+ 1, because for |x| ≥ max{|ai|}+ 1 one has:∣∣∣∣∣

n∑
i=0

aix
i

∣∣∣∣∣ ≥ |an||x|n −
n−1∑
i=0

|ai||x|i ≥
n−1∑
i=0

(max{|aj|} − |ai|) |x|i + 1 > 0.
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Thus the absolute value of the roots of t(X) are at most (pqD)dq((d+1)q(2c)q
(
dqh
cq

)dq
+h)+1.

In conclusion the solutions (x, y) ∈ Z2 of ya = f(x) satisfy:

|x| ≤ max
{

2cd
(
dqhDq+1

)d
(dq + h), (2c(d+ 1))q (dqhDq+1)dq + h(pqD)dq + 1

}
≤ (2c(d+ 1))q (dqhDq+1)dq(dq + h) + h(pqD)dq + 1.

In the proof only f being not a perfect q-th power is required. Further note one gets a better
bound by choosing q as small as possible.
This idea of using the Taylor expansion around infinity generalizes further into finding an
algebraic closure of C((X−1)), which is given by the Puiseux series. This result is known as
the Newton-Puiseux theorem.

Corollary 4.5. Let q ∈ N, q > 1, f(X) ∈ Q[X] be a non-constant polynomial not a perfect
q-th power and l ∈ Q+. Then there are only finitely many x ∈ Z such that f(x) and f(x+ l)
are both q-th powers in Q and they can be effectively found.

Proof. Let D be a common denominator of f(X) and f(X+l), then for every x ∈ Z such that
f(x) = rq and f(x+ l) = sq, where r, s ∈ Q, one has Z 3 Dqf(x)q−1f(x+ l) = (Drq−1s)q and
so Drq−1s ∈ Z. Now Dqf(X)q−1f(X + l) has degree q deg(f) and leading coefficient (Dc)q,
where c is the leading coefficient of f(X). It remains to prove, that Dqf(X)q−1f(X + l)
is not a q-th power, because then we can apply the previous proposition. Let f(X) =
cQ(X)qQ1(X)k1 · · · · ·Qm(X)km , where Qi ∈ Q[X] are distinct monic irreducible polynomials
of degree > 0 and 0 < ki < q and Q ∈ Q[X] monic. Now suppose Dqf(X)q−1f(X + l) is a

perfect q-th power. Then G(X) =
(
Q1(X)k1 · · · · ·Qm(X)km

)q−1
Q1(X+l)k1 ·· · ··Qm(X+l)km

has to be a q-th power in Q[X]. Now in order to have q|νQi
(G) there must be a j(i) such

that Qj(i)(X + l) = Qi(X) (and kj(i) = ki). Now there exists u 6= v ∈ N0 such that

j ◦ · · · ◦ j︸ ︷︷ ︸
u−times

(1) = j ◦ · · · ◦ j︸ ︷︷ ︸
v−times

(1) = h,

then Qh(X + (u− v)l) = Qh(X).
For a polynomial P (X) over a field of characteristic 0, P (X) = P (X + a) for some a 6= 0
implies that P (X) is constant, because P (X) − P (0) has infinitely many distinct roots
x = 0, a, 2a, 3a, . . . .
This implies m = 0. Now if there is a x ∈ Z such that f(x) = rq, r ∈ Q×, then c must
be a q-th power in Q contradicting the assumption. If not, then the only solutions are the
integral zeros of distance l.

Given a polynomial f(X), then there is not necessarily a bound on l, because there are
arbitrary large Pythagorean triples: [a(b2− c2)]2 = [a(b2 + c2)]2− [2abc]2 = [a(b− c)2] · [a(b−
c)2 + 4abc], which generate solutions for f(X) = X.
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