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A B S T R A C T

The delta symbol circle method is applied to the problem of equidistribution of rational

points on shrinking sets of the 3-sphere. This leads to a correlation sum of Kloosterman

sums and an exponential function also known as the twisted Linnik–Selberg conjecture,

which is further analysed by means of the Kuznetsov trace formula. Furthermore, the

circle method in the guise of Wooley’s efficient congruencing machinery is employed in

an effective manner to obtain effective bounds on Vinogradov’s mean value theorem.
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1
I N T R O D U C T I O N

In this thesis, the interplay between automorphic forms and the Hardy–Littlewood circle

method is explored. Whilst these two subjects now appear to have little in common, this

was not always so. Just over a century ago, the circle method was born and first applied

to an automorphic form, namely, the Dedekind eta function, in the works of Hardy and

Ramanujan [HR18], who were interested in an asymptotic for the partition numbers.

They found that its generating series, which is related to the Dedekind eta function,

becomes large as the argument approached the unit circle at an angle e2πir for rational

r with small denominator and is small otherwise. Thus, they concluded that the growth

of the partition numbers is dominated by the behaviour of the Dedekind eta function

at those rational numbers r. It proved useful that the Dedekind eta function satisfies

modular relations, being an automorphic form, which facilitated a simple description

of its behaviour at those rationals. In the 1920’s, Hardy and Littlewood started to apply

the same philosophy to other problems, such as Waring’s problem [HL20], with great

success. Nowadays, the circle method takes on many forms, with contributions having

been made by various authors; notably Vinogradov, who introduced his eponymous

mean value theorem [Vin35b, Vin35a], with far-reaching application to exponential sums.

This is further discussed in Chapter 5; in particular, in Section 5.3, where we shall prove

an effective Vinogradov mean value theorem based on new developments by Wooley

[Woo12].

The two subjects overlap further in the theory of quadratic forms. The connection

here is that the generating function is given by a theta function, which is in turn an auto-

morphic form. Furthermore, the exponential sums that crop up in connection with quad-

ratic forms, Kloosterman and Salié sums, are also of significance to both subjects. Origin-

ally, they were discovered by Poincaré as part of the Fourier coefficients of the Poincaré

series, yet another set of important automorphic forms, but only gained (at)traction after

they appeared in Kloosterman’s refinement of the circle method. Shortly thereafter, they

were also used by Kloosterman [Klo27] to give bounds on the size of the Fourier coef-

1



introduction

ficients of holomorphic forms. Today, optimal bounds on the size of the Fourier coeffi-

cients of holomorphic forms (of integral weight), as well as the size of Kloosterman sums,

are known from arithmetic geometry. Nonetheless, there remain many open questions

concerning Kloosterman sums. One of these questions is the Linnik–Selberg Conjecture

on sums of Kloosterman sums. The only non-trivial progress towards this conjecture

stems from Kuznetsov’s trace formula [Kuz80], which we shall prove in great generality

in Section 3.10. In Chapter 4, we shall apply the Kuznetsov trace formula to a twisted ver-

sion of the Linnik–Selberg Conjecture on sums of Kloosterman sums, which resurfaces

in Chapter 6. The final part of this thesis concerns a problem about quadratic forms. Con-

cretely, we shall be looking at the solutions to the equation x21 + x22 + x23 + x24 = N and

how fast their projections onto S3 equidistribute with respect to the Lebesgue measure

as N runs over the odd integers. This has far-reaching consequences to efficient quantum

computing on 1-qubits. We shall employ, compare, and contrast an automorphic and a

circle-method approach to this problem in Chapter 6.
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2
N O TAT I O N

The set of natural numbers is denoted by N, which start at 1. If 0 is to be included

in this set it is denoted by N0. The set of integers is denoted by Z. The symbols Q,R

denote the set of rational numbers, respectively the set of real numbers. The subset of

(strictly) positive rational, respectively real, numbers is denoted by Q+, respectively R+.

If 0 is to be included in these sets, then they are denote by Q+
0 , respectively R+

0 , which

now consist of all non-negative rational, respectively real, numbers. Closed intervals are

denoted by [a, b], open ones by ]a, b[, and half-open ones by [a, b[, respectively ]a, b]. The

characteristic function of an interval I is denoted by 1lI . The set of complex numbers

is denoted by C. The letter s is usually used to denote a complex number. The real

part and the imaginary part of a complex number s are denoted by Re(s) and Im(s),

respectively. The complex conjugate of s is denoted by s, the norm of s by |s| =
√
ss,

and the argument of s 6= 0 by arg(s). The argument shall always denote its principal

value, i.e. −π < arg(s) ≤ π. The subset of the complex numbers with positive imaginary

part is denoted by H and is referred to as the upper half-plane. A complex number in

the upper half-plane is often denoted by z = x+ iy, where x denotes the real part of z

and y its imaginary part. Vectors are emphasised using bold font, for example v,w, and

inner products are either denoted by 〈v,w〉 or by v ·w.

The Möbius function is denoted by µ. The divisor function is denoted by τ . The num-

ber of representations of n as a sum of m squares of integers is denoted by rm(n). The

Jacobi symbol is denoted by (mn). The prime in
∑′

amod(c)
indicates that the sum is re-

stricted to those amod(c) with (a, c) = 1. The function exp(2πiz) is usually abbreviated

to e(z) and sometimes eq(z) is used to denote e( zq ). For a non-zero complex number

s ∈ C×, the logarithm log(s) denotes its principal value, i.e. log(s) = log(|s|) + i arg(s),

and exponentiating by another complex number w is defined as sw = exp(w · log(s)).

The meromorphic extension of the Gamma function is denoted by Γ(s). Lp-norms are

denoted by ‖ · ‖p and ‖ · ‖M ,p denotes the Sobolev Lp-norm of order M . The integral
∫ (0+)
−∞

denotes a lock-hole-shaped contour integral also known as a Hankel contour, which
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notation

starts at −∞, loops around 0 once in positive direction (anti-clockwise), and goes back

to −∞. It will often be the case for this type of integral that the logarithm takes its prin-

cipal value, except for the non-positive real axis, where it is two-valued in a continuous

manner.

We further adopt Landau’s big O notation and Vinogradov’s notations �, �. The

latter is used out of convenience of the notation, where f � g has the same meaning as

f = O(g) and f � g has the same meaning as f = Θ(g), i.e. f � g � f . Subscripts, such

as OA,B or�A,B , mean that the implied constant may depend on A and B. A subscript

of ε, for example f �ε x
ε, however shall mean for every sufficiently small ε > 0 there

is a constant C, which may depend on ε, such that we have |f | ≤ Cxε. Occasionally, ε

is used otherwise in which case we shall abuse some notation and write� xo(1), which

shall mean�ε x
ε + x−ε (in the above mentioned sense).
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3
A U T O M O R P H I C F O R M S

3.1 introduction

The theory of automorphic forms finds its origins in elliptic functions and was general-

ised by F. Klein and others to a more abstract setting. Let X be a Riemannian manifold

and Γ a group acting properly discontinuously on X . Then, a function that is invariant

under the action of Γ and also an eigenfunction of all invariant differential operators on

X is called an automorphic function of Γ \X . More generally, one can allow for certain

multipliers, describing the way in which Γ acts on C∞(X,R). Here, we are concerned

with the special case X = SL2(R) / SO2(R). Maass [Maa49] discovered a connection

between the automorphic forms for this particular example and degree two L-functions

and henceforth they carry his name. Much of the theory we know today was worked out

by Maass [Maa52] and Selberg [Sel89]. The theory, which we summarise here, is mostly

based on Roelcke [Roe66], Iwaniec [Iwa97, Iwa02], and Rankin [Ran77], and citations

are given whenever possible. However, in this thesis, we consider the subject in slightly

more generality and a reference is not always readily available. Due to some subtleties,

e.g. branches of logarithms, proofs are carried out in those cases, despite being of similar

nature to proofs in a more classical setting.

3.2 fuchsian groups of the first kind

The upper half-plane H may be identified as the quotient SL2(R) / SO2(R) via the map(
a b
c d

)
7→ (ai+ b)(ci+ d)−1 with inverse given by x+ iy 7→ 1√

y (
y x
0 1 ). This gives rise to a

natural action of SL2(R) on H, which is given by

γ · z = γz =
az + b

cz + d
, where γ =

(
a b
c d

)
∈ SL2(R).

5



3.2 fuchsian groups of the first kind

This map is also known as a Möbius transformation. This action can be further extended

to the real projective line P1(R) = R ∪ {∞} =: ∂H. The cocycle j : SL2(R)×H → C×

given by

j(γ, z) = cz + d, where γ =
(
a b
c d

)
∈ SL2(R), z ∈H,

is related to the Möbius transformation z 7→ γz, say its derivative is j(γ, z)−2 and

Im(γz) = Im(z)/|j(γ, z)|2, and will appear rather frequently.

Definition 3.2.1. A subgroup Γ̂ ⊆ PSL2(R) is called a Fuchsian subgroup of the first kind

if Γ̂ acts discontinuously on H and every point in ∂H is a limit point of Γ̂z for some

z ∈H.

For a Fuchsian group Γ̂ of the first kind, we let Γ be the pre-image of Γ̂ under the

projection SL2(R) → PSL2(R). Vice versa, for Γ ⊆ SL2(R) with −I ∈ Γ we let Γ̂ be the

image of Γ. Moreover, we say that Γ is a Fuchsian group of the first kind if Γ̂ is.

Example 3.2.1. Typical examples include PSL2(Z), congruence subgroups Γ̂0(N), Γ̂1(N),

Γ̂(N), and the theta subgroup Γ̂θ. Here,

Γ̂0(N) = {γ ∈ PSL2(Z)|γ ≡ ( ? ?0 ? )mod(N)} ,

Γ̂1(N) = {γ ∈ PSL2(Z)|γ ≡ ± ( 1 ?0 1 )mod(N)} ,

Γ̂(N) = {γ ∈ PSL2(Z)|γ ≡ ±Imod(N)} ,

Γ̂θ = {γ ∈ PSL2(Z)|γ ≡ I or ( 0 1
1 0 )mod(2)} .

Definition 3.2.2. Let Γ̂ be a Fuchsian group of the first kind. A domain F ⊆H is called

a fundamental domain for Γ̂ if

1. ∀z,w ∈ F : Γ̂z ∩ Γ̂w 6= ∅ ⇔ z = w,

2. ∀z ∈H : Γ̂z ∩ F 6= ∅.

We shall often denote such a set F by FΓ.

A fundamental domain of a Fuchsian group of the first kind need not be compact.

It may contain segments which diverge to points in ∂H. We call such points cusps.

Formally, we shall define a cusp as follows.

Definition 3.2.3. Let Γ̂ be a Fuchsian group of the first kind. A point a ∈ ∂H is called a

cusp of Γ̂ if it is fixed by a parabolic element of Γ̂. We say two cusps a, b are equivalent if

Γ̂a = Γ̂b and the set of equivalence classes of cusps we refer to as the cusps of Γ̂.

6



3.2 fuchsian groups of the first kind

From here on onwards, we shall fix one cusp for each equivalence class of cusps. This

will simplify matters as not everything we shall define will be independent of the choice

of representative of an equivalence class.

The stabiliser group Γ̂a of a cusp a is cyclic. This follows since Γ̂a is a discrete subgroup

of PSL2(R)a, which is a one-parameter subgroup. To this end let γ̂a be a generator. We

may wish to translate the cusp a to∞, which we achieve through a scaling matrix.

Definition 3.2.4. Let a be a cusp of Γ̂. A matrix σa ∈ SL2(R) is called scaling matrix for a

if it satisfies the following properties:

1. σa∞ = a,

2. σ̂−1a γ̂aσ̂a = ± ( 1 1
0 1 ),

3. σa =
(
a b
c d

)
with either c 6= 0 or c = 0 and d > 0.

Remark 3.2.2. The last condition is not necessary and is usually omitted. However, we

include it as it implies σκ(σa,σ−1a ) = σκ(σ−1a ,σa) = 1 (see (3.1) for the definition of σκ).

Proposition 3.2.3. Every Fuchsian group of the first kind has a fundamental domain of finite

volume and the volume depends only on the group itself.

Proof. See [Sie43].

Next, we shall define what constitutes an automorphy factor. Although, there is a

notion of automorphy factor of complex weight κ ∈ C, we shall restrict ourselves to real

weight κ ∈ R.

Definition 3.2.5. An automorphy factor ν of weight κ with respect to Γ is a function

ν : Γ×H→ C that satisfies the properties

1. ∀γ, τ ∈ Γ,∀z ∈H : ν(γτ , z) = ν(γ, τz)ν(τ , z),

2. ∀γ ∈ Γ, ∀z ∈H : |ν(γ, z)| = |j(γ, z)|κ,

3. ∀z ∈H : ν(−I, z) = 1.

Given an automorphy factor ν of weight κ we can define an associated multiplier

system υ : Γ → S1 by ν(γ, z) = υ(γ)j(γ, z)κ for γ ∈ Γ and z ∈ H. Note that υ is indeed

independent of z by the maximum modulus principle. In order to quantify the relations

7



3.2 fuchsian groups of the first kind

a multiplier system must satisfy to be associated to an automorphy factor, we need to

introduce a correction factor, which is given by

σκ(γ, τ ) =
j(γ, τz)κj(τ , z)κ

j(γτ , z)κ
, ∀γ, τ ∈ SL2(R), ∀z ∈H. (3.1)

This is again independent of z by the maximum modulus principle. We are now able to

give the defining properties of a multiplier system.

Definition 3.2.6. A multiplier system υ of weight κ with respect to Γ is a function υ : Γ→

S1 that satisfies the properties

1. ∀γ, τ ∈ Γ : υ(γτ ) = υ(γ)υ(τ )σκ(γ, τ ),

2. υ(−I) = e
(
−κ

2

)
.

Note that, if υ is a multiplier system of weight κ for Γ, then it is also one for every

weight in κ+ 2Z. Moreover, υ is a multiplier system of weight −κ for Γ. The behaviour

of a multiplier system at a cusp is going to be of significance.

Definition 3.2.7. Let υ be a multiplier system for Γ and a be a cusp of Γ. Then, the cusp

parameter ηυa = ηa is defined by υ(σa ( 1 1
0 1 ) σ

−1
a ) = e(ηa) and ηa ∈ [0, 1[. A cusp a is said

to be singular with respect to υ if ηa = 0.

For technical reason we let δnsa denote the indicator function for non-singular cusps.

Note that we have δnsa = ηυa + ηυa .

We shall further require some transformation laws of the correction factor σκ.

Lemma 3.2.4. The following relations are valid for
(
a b
c d

)
= γ1, γ2, γ3 ∈ SL2(R) and

∀ρ ∈
(

R+ R
{0} R+

)
∩ SL2(R):

σκ(γ1, γ2γ3)σκ(γ2, γ3) = σκ(γ1, γ2)σκ(γ1γ2, γ3), (3.2)

σκ(γ1, ρ) = σκ(ρ, γ1) = 1, (3.3)

σκ(γ1, γ2) = σκ(ργ1, γ2) = σκ(γ1, γ2ρ), (3.4)

σκ(γ1ρ, γ2) = σκ(γ1, ργ2), (3.5)

σκ(γ1ργ
−1
1 , γ1) = σκ(γ1, γ

−1
1 ργ1) = 1, (3.6)

σκ(γ1ργ
−1
1 , γ1γ

−1
2 ) = σκ(γ1γ

−1
2 , γ2ργ

−1
2 ), (3.7)

(3.8)

8



3.2 fuchsian groups of the first kind

σκ(γ1, γ
−1
1 ) = σκ(γ

−1
1 , γ1) =


1, if c 6= 0 or c = 0 and d > 0,

e(κ), if c = 0 and d < 0.

(3.9)

Proof. See [Ran77, Chapter 3].

Proposition 3.2.5. Given a matrix τ ∈ SL2(R) and a multiplier system υ of weight κ on Γ we

can define a conjugate multiplier system υτ on τ−1Γτ by

υτ (γ) = υ(τγτ−1)
σκ(τγτ−1, τ )

σκ(τ , γ)
∀γ ∈ τ−1Γτ .

Proof. This is easily verified using Lemma 3.2.4 or see [Ran77, pp. 72-73].

Proposition 3.2.6. Let a and b be two cusp for Γ. Then, we have a decomposition

σ−1a Γ̂σb = δa,bB t
⊔
c>0

⊔
dmod cZ

Bωc,dB,

where B = {( 1 b0 1 ) |b ∈ Z} and the union is only taken over those pairs (c, d) for which there

exist a matrix ( ? ?c d ) ∈ σ−1a Γ̂σb, and ωc,d denotes an arbitrarily chosen one thereof. The set of

these c’s will be of importance and we shall denote it by Ca,b, i.e.

Ca,b =
{
c ∈ R+

∣∣∣∃ ( a bc d ) ∈ σ−1a Γσb
}
.

Proof. This is [Iwa02, Theorem 2.7].

Lemma 3.2.7. We have Ca,b = Cb,a.

Proof. The map γ 7→ −γ−1 is clearly an involution from σ−1a Γ̂σb → σ−1b Γ̂σa, which in-

duces an involution Ca,b → Cb,a given by c 7→ c.

Let us denote by ca,b the smallest element of Ca,b and simply ca for ca,a. The existence

of such a minimal element is proven [Iwa02][Section 2.6], however the proof given there

requires some knowledge on the geometry of Fuchsian groups. We give a simpler proof

here. Let us consider the special case a = b first. Suppose Ca,a is the empty set. Then,

by using Proposition 3.2.6 we have σ−1a Γ̂σa = B which implies that a fundamental do-

main of Γ has infinite volume, a contradiction. Thus, we may define ca as the infimum.

9



3.3 kloosterman sums

We wish to show ca > 0. By invoking [Iwa02][Prop. 2.1] we know that Fuchsian sub-

groups are discrete subgroups of SL2(R). Let γ = ( ? ?c ? ) ∈ σ−1a Γσa. Then, we may find(
a b
c d

)
∈ ±BγB ⊆ σ−1a Γσa with a = 1 + O(c), b = O(1), and d = 1 + O(c). If there

were arbitrarily small such c’s we would reach a contradiction with the discreteness of

Γ. Now, Proposition 3.3.3 shows that the set Ca,a must be discrete. Hence ca is indeed

a minimum. The general case follows from Propositions 3.2.6, which shows that Ca,b is

non-empty, and 3.3.3, which shows the discreteness of the set Ca,b.

We record here a counting lemma, which will come in handy later on.

Lemma 3.2.8. Let a be a cusp for Γ, z ∈H and Y > 0. We have

#
{
γ ∈ Γ̂a \ Γ̂

∣∣ Im(σ−1a γz) > Y and Γ̂aγ 6= Γ̂a

}
≤ 10

caY
.

Proof. This is [Iwa02, Lemma 2.10].

3.3 kloosterman sums

The classical Kloosterman sum, that appeared in Kloosterman’s work [Klo26] is given

by

S(m,n; c) =
∑′

dmod(c)

e

(
md+ nd

c

)
, m,n ∈ Z, c ∈N. (3.10)

They appear as the Fourier coefficients of Poincaré series for the modular group SL2(Z)

with trivial multiplier system. In this way, we shall generalise the Kloosterman sum. For

c ∈ Ca,b, we define the Kloosterman sum as follows:

Sυ,κa,b (m,n; c) = e−
πi
2
κ

∑
(
a b
c d

)
∈B \σ−1

a Γσb /B

υ(σa
(
a b
c d

)
σ−1b )e

(
(m+ ηa)

a

c
+ (n+ ηb)

d

c

)

× σκ(σa,
(
a b
c d

)
σ−1b )σκ(

(
a b
c d

)
,σ−1b ). (3.11)

Remark 3.3.1. Often in the literature, the Kloosterman sums are defined without the

extra factor e−
πi
2
κ. However, with this normalisation the Kloosterman sum Sυ,κa,a (m,m; c)

is real (see Proposition 3.3.2). It is rather unfortunate that with this normalisation the

Kloosterman sum is no longer well-defined for κmod(2), but rather κmod(4), hence we

carry the κ around in our notation for clarity.

10



3.3 kloosterman sums

The Kloosterman sums are well-defined. This will follow from Proposition 3.4.5, how-

ever it is a good exercise in the σκ-relations 3.2.4 to prove it directly. Let us first prove

that we may replace
(
a b
c d

)
with ( 1 1

0 1 )
(
a b
c d

)
=
(
a+c b+d
c d

)
. We have

υ(σa ( 1 1
0 1 )

(
a b
c d

)
σ−1b ) = υ(σa ( 1 1

0 1 ) σ
−1
a )υ(σa

(
a b
c d

)
σ−1b )σκ(σa ( 1 1

0 1 ) σ
−1
a ,σa

(
a b
c d

)
σ−1b )

= e(−ηa)υ(σa
(
a b
c d

)
σ−1b )σκ(σa ( 1 1

0 1 ) σ
−1
a ,σa

(
a b
c d

)
σ−1b )

from the definition of a multiplier system and the definition of the cusp parameter.

Furthermore, we have

e

(
(m+ ηa)

a+ c

c
+ (n+ ηb)

d

c

)
= e(ηa)e

(
(m+ ηa)

a

c
+ (n+ ηb)

d

c

)
.

By using (3.2) and (3.6), we get

σκ(σa ( 1 1
0 1 ) σ

−1
a ,σa

(
a b
c d

)
σ−1b ) =

σκ(σa,
(
a b
c d

)
σ−1b )

σκ(σa ( 1 1
0 1 ) σ

−1
a ,σa)

σκ(σa ( 1 1
0 1 ) ,

(
a b
c d

)
σ−1b )

= σκ(σa,
(
a b
c d

)
σ−1b )σκ(σa ( 1 1

0 1 ) ,
(
a b
c d

)
σ−1b ).

By using (3.2) again as well as (3.3), we find

σκ(σa, ( 1 1
0 1 )

(
a b
c d

)
σ−1b ) =

σκ(σa ( 1 1
0 1 ) ,

(
a b
c d

)
σ−1b )σκ(σa, ( 1 1

0 1 ))

σκ(( 1 1
0 1 ) ,

(
a b
c d

)
σ−1b )

= σκ(σa ( 1 1
0 1 ) ,

(
a b
c d

)
σ−1b ).

Finally, we find by means of (3.3), that

σκ(( 1 1
0 1 )

(
a b
c d

)
,σ−1b ) = σκ(

(
a b
c d

)
,σ−1b ).

The combination of all of these equations shows that the left quotient is well-defined. To

show that the right quotient is well-defined we need to show that we can replace
(
a b
c d

)
with

(
a b
c d

)
( 1 1
0 1 ) =

(
a a+b
c c+d

)
. Noting that

σκ(σa,
(
a b
c d

)
σ−1b )σκ(

(
a b
c d

)
,σ−1b ) = σκ(σa,

(
a b
c d

)
)σκ(σa

(
a b
c d

)
,σ−1b ),

we find that the proof will be pretty much identical, thus we omit the computation.

The next proposition shows that the Kloosterman sums admit some symmetries. In

particular, they show that in the case when the two cusps a, b, and m,n are equal, re-

spectively, the Kloosterman sum is real.

Proposition 3.3.2. We have

Sυ,κa,b (m,n; c) = Sυ,−κa,b (−m− δnsa ,−n− δnsb ; c) = Sυ,κb,a (n,m; c)
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3.3 kloosterman sums

Proof. The author believes there should be a short conceptual prove of this facta. How-

ever, the author was not able to find one and therefore an ad hoc proof is given.

The first equality clearly holds by simply writing out the definitions. For this endeav-

our, one should recall that υ is a multiplier system of weight −κ. The second equality

requires a lot more work. We are going to make use of the involution in Lemma 3.2.7.

For this matter, we need a few identities. The first one follows from the definition of a

multiplier system

υ(σa
(
a b
c d

)
σ−1b ) =υ(−I)υ(σb

(−d b
c −a

)
σ−1a )σκ(σa

(
a b
c d

)
σ−1b ,σb

(−d b
c −a

)
σ−1a )

=e−πiκυ(σb
(−d b
c −a

)
σ−1a )σκ(σa

(
a b
c d

)
σ−1b ,σb

(−d b
c −a

)
σ−1a ).

The second, third, and fourth are just (3.2)

σ−κ(σa,
(
a b
c d

)
σ−1b ) =σκ(σa

(
a b
c d

)
σ−1b ,σb

(−d b
c −a

)
σ−1a )σ−κ(σa,−σ−1a )

· σ−κ(
(
a b
c d

)
σ−1b ,σb

(−d b
c −a

)
σ−1a ),

σ−κ(
(
a b
c d

)
σ−1b ,σb

(−d b
c −a

)
σ−1a ) =σκ(σb,

(−d b
c −a

)
σ−1a )σ−κ(

(
a b
c d

)
,
(−d b
c −a

)
σ−1a )

· σ−κ(
(
a b
c d

)
σ−1b ,σb),

σ−κ(
(
a b
c d

)
,
(−d b
c −a

)
σ−1a ) =σκ(

(−d b
c −a

)
,σ−1a )σ−κ(−I,σ−1a )σ−κ(

(
a b
c d

)
,
(−d b
c −a

)
).

The fifth follows from (3.2), (3.3) and the choice of σa

σ−κ(σa,−σ−1a ) =σκ(σ
−1
a ,−I)σ−κ(I,−I)σ−κ(σa,σ−1a ) = σκ(σ

−1
a ,−I).

The sixth is (3.2), (3.3) as well as the choice of σb

σ−κ(
(
a b
c d

)
,σ−1b )σ−κ(

(
a b
c d

)
σ−1b ,σb) =σ−κ(

(
a b
c d

)
, I)σ−κ(σ

−1
b ,σb) = 1.

The seventh is writing out the definitions

σκ(σ
−1
a ,−I)σ−κ(−I,σ−1a ) =

j(σ−1a , z)κj(−I, z)κ

j(−σ−1a , z)κ
· j(−σ−1a , z)κ

j(−I,σ−1a z)κj(σ−1a , z)κ
= 1.

And finally, the last one follows from (3.2), (3.3) and (3.9)

σ−κ(
(
a b
c d

)
,
(−d b
c −a

)
) =σκ(

(
d −b
−c a

)
,−I)σ−κ(I,−I)σ−κ(

(
a b
c d

)
,
(
d −b
−c a

)
)

=σκ(
(
d −b
−c a

)
,−I) = 1.

a A long conceptual proof can be given through the evaluation of the inner product in Proposition 3.6.7 in

two ways and establishing enough analytic freedom.
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3.4 maass forms

Combining all of them shows

υ(σa
(
a b
c d

)
σ−1b )σ−κ(σa,

(
a b
c d

)
σ−1b )σ−κ(

(
a b
c d

)
,σ−1b )

= e−πiκυ(σb
(−d b
c −a

)
σ−1a )σκ(σb,

(−d b
c −a

)
σ−1a )σκ(

(−d b
c −a

)
,σ−1a ).

The only thing left to note is

e

(
(−m− δsa + ηυa )

a

c
+ (−n− δsb + ηυb )

d

c

)
= e

(
(n+ ηυb )

−d
c

+ (m+ ηυa )
−a
c

)
.

We have the following trivial bounds for the Kloosterman sum.

Proposition 3.3.3. For any c ∈ Ca,b, we have

|Sυ,κa,b (m,n; c)| ≤ max{ca, cb}−1c2 (3.12)

and ∑
c∈Ca,b
c≤X

1

c
|Sυ,κa,b (m,n; c)| ≤ max{ca, cb}−1X. (3.13)

Proof. See [Iwa02, Proposition 2.8, Corollary 2.9].

From this, it follows that the Kloosterman zeta function, which we shall define as

Zυ,κa,b (m,n; s) =
∑
c∈Ca,b

Sυ,κa,b (m,n; c)

c2s
, (3.14)

converges locally absolutely uniformly to a holomorphic function in the half-plane

Re(s) > 1. In fact, Zυ,κa,b (m,n; s) extends to a meromorphic function in the half-plane

Re(s) > 1
2 . We refer to [Sel65].

3.4 maass forms

On the set of functions f : H→ C, we may define the slash operator |κγ for every matrix

γ ∈ SL2(R). The operator is defined as follows

(f |κγ)(z) =
(
j(γ, z)

|j(γ, z)|

)−κ
f(γz)

and it satisfies

f |κγτ = σκ(γ, τ ) · (f |κγ)|κτ , ∀γ, τ ∈ SL2(R).
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3.4 maass forms

Definition 3.4.1. Let Γ be a Fuchsian group of the first kind and υ a multiplier system

of weight κ with respect to Γ. A function f : H → C is called modular with respect to υ

(and Γ) if it satisfies

f |κγ = υ(γ)f , ∀γ ∈ Γ.

The set of all such functions is denoted by Fκ(Γ, υ).

On the space C∞(H,C), we may also define the Laplace–Beltrami operator ∆κ (of

weight κ), which is given as

∆κ = y2
(
∂2

∂x2
+

∂2

∂y2

)
− iκy ∂

∂x
.

The operator does not agree with the usual Laplace–Beltrami operator ∆ on H, which is

given by ∆0. However, ∆κ is linearly related to the Laplace–Beltrami operator of the uni-

versal cover S̃L2(R) of SL2(R) when restricted to a certain subspace of C∞(S̃L2(R),C).

This justifies its name. The reader may wish to consult with [Roe66, Chapter 4] to find

the details of this connection.

Lemma 3.4.1. The Laplace–Beltrami operator ∆κ commutes with all the slash operators |κγ.

Proof. We have

∆κ = −(z − z̄)2 ∂2

∂z∂z̄
− κ

2
(z − z̄)

(
∂

∂z
+

∂

∂z̄

)
,

where
∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Before proceeding, the reader may wish to recall the chain rules

∂

∂z
(f ◦ g) = (fz ◦ g)gz + (fz̄ ◦ g)ḡz and

∂

∂z̄
(f ◦ g) = (fz ◦ g)gz̄ + (fz̄ ◦ g)gz,

where fz respectively fz̄ denotes the partial derivative with respect to z respectively z̄.

Now, let f ∈ C2(H,C) and γ =
(
a b
c d

)
∈ SL2(R). Then, we have that ((∆κf)|κγ)(z)

equals

− j(γ, z)−
κ
2 j(γ, z̄)

κ
2

[
(z − z̄)2

j(γ, z)2j(γ, z̄)2
fz̄z(γz) +

κ

2

z − z̄
j(γ, z)j(γ, z̄)

(fz(γz) + fz̄(γz))

]
.

Next, we have

∂

∂z
(f |κγ)(z) = −c

κ

2
j(γ, z)−

κ
2
−1j(γ, z̄)

κ
2 f(γz) + j(γ, z)−

κ
2
−2j(γ, z̄)

κ
2 fz(γz),

∂

∂z̄
(f |κγ)(z) = c

κ

2
j(γ, z)−

κ
2 j(γ, z̄)

κ
2
−1f(γz) + j(γ, z)−

κ
2 j(γ, z̄)

κ
2
−2fz̄(γz),
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3.4 maass forms

and furthermore
∂2

∂z∂z̄
(f |κγ)(z) =− c2

κ2

4
j(γ, z)−

κ
2
−1j(γ, z̄)

κ
2
−1f(γz) + c

κ

2
j(γ, z)−

κ
2
−2j(γ, z̄)

κ
2
−1fz(γz)

− cκ
2
j(γ, z)−

κ
2
−1j(γ, z̄)

κ
2
−2fz̄(γz) + j(γ, z)−

κ
2
−2j(γ, z̄)

κ
2
−2fz̄z(γz).

Hence,

∆κ(f |κγ)(z) =− (z − z̄)2j(γ, z)−
κ
2
−2j(γ, z̄)

κ
2
−2fz̄z(γz)

− κ

2
(z − z̄)j(γ, z)−

κ
2
−2j(γ, z̄)

κ
2
−1 (j(γ, z̄) + (z − z̄)c) fz(γz)

− κ

2
(z − z̄)j(γ, z)−

κ
2
−1j(γ, z̄)

κ
2
−2 (j(γ, z)− (z − z̄)c) fz̄(γz)

+ c
κ2

4
(z − z̄)j(γ, z)−

κ
2
−1j(γ, z̄)

κ
2
−1 (c(z − z̄) + j(γ, z̄)− j(γ, z)) f(γz)

=((∆κf)|κγ)(z).

Therefore, ∆κ operates on A∞κ (Γ, υ) = C∞(H,C) ∩ Fκ(Γ, υ) and we are now able to

define what a Maass form is.

Definition 3.4.2. A Maass form with respect to the Fuchsian group Γ, multiplier system υ

of weight κ is a non-zero function f ∈ A∞κ (Γ, υ), which satisfies the following properties

1. f is real analytic in x and y simultaneously,

2. ∃λf ∈ C : −∆κf = λff ,

3. For all cusps a of Γ, we have (f |κσa)(z) = yO(1) as y →∞ uniformly in x.

λf is called the eigenvalue of f (with respect to ∆κ). The span of all Maass forms with

respect to Γ and υ of weight κ and eigenvalue λ is denoted by A∞κ (Γ, υ,λ).

We can expand a Maass form f at a cusp a of Γ as a series. For this matter, we let tf

satisfy the equation λf = 1
4 + t2f and let us denote with Wk,m(z) the Whittaker function,

which is defined in (A.1). If λf happens to be real, then we make the convention that

tf ∈ R+
0 ∪ iR

+
0 . The expansion takes the following shape [Roe66, Chapter 2]:

(f |κσa)(z) =
∑
m∈Z

cf (a,m; y)e((m+ ηa)x), (3.15)

where

cf (a,m; y) =



ρf (a,m)Wsign(m+ηa)
κ
2
,itf (4π|m+ ηa|y), m+ ηa 6= 0,

ρf (a, 0)y
1
2
+itf + ρ′f (a, 0)y

1
2
−itf , m = ηa = 0 6= tf ,

ρf (a, 0)y
1
2 + ρ′f (a, 0)y

1
2 log(y), m = ηa = tf = 0.

15



3.4 maass forms

This expansion converges absolutely uniformly for y ≥ y0 and we shall refer to it as

the Fourier expansion. We say a Maass form is cuspidal if the coefficients ρf (a, 0) and

ρ′f (a, 0) vanish for all singular cusps.

Besides the Laplace–Beltrami operator ∆κ, there are also two further operators which

increase, respectively decrease, the weight of a function. They are defined as follows:

Kκ = iy
∂

∂x
+ y

∂

∂y
+
κ

2
= (z − z) ∂

∂z
+
κ

2
,

Λκ = iy
∂

∂x
− y ∂

∂y
+
κ

2
= (z − z) ∂

∂z
+
κ

2
.

We have the following lemma.

Lemma 3.4.2. Let f ∈ C∞(H,C) and γ ∈ SL2(R). Then, we have

(Kκf)|κ+2γ = Kκ(f |κγ),

(Λκf)|κ−2γ = Λκ(f |κγ),

−∆κ = Λκ+2Kκ − κ
2 (1+

κ
2 ),

−∆κ = Kκ−2Λκ +
κ
2 (1−

κ
2 ),

∆κ+2Kκ = Kκ∆κ,

∆κ−2Λκ = Λκ∆κ.

Proof. See [Roe66, pp. 305-306]

This shows that Kκ maps A∞κ (Γ, υ,λ) to A∞κ+2(Γ, υ,λ) and Λκ maps A∞κ (Γ, υ,λ) to

A∞κ−2(Γ, υ,λ), which are bijections as long as λ 6= −κ
2 (1+

κ
2 ), respectively λ 6= κ

2 (1−
κ
2 ).

We shall classify at a later stage what happens at these special eigenvalues (see Lemma

3.5.2). We shall examine what happens to the Fourier coefficient of a Maass form under

the increase and decrease operator.

Lemma 3.4.3. Let f ∈ A∞κ (Γ, υ,λ). Then, we have for the increase operator Kκ:

ρKκf (a,m) = ρf (a,m)×


−1, m+ ηa > 0,(
t2f + (κ2 +

1
2 )

2
)
, m+ ηa < 0,

if m = ηa = 0 6= tf , then we have

ρKκf (a, 0) = ( 12 +
κ
2 + itf )ρf (a, 0),

ρ′Kκf (a, 0) = ( 12 +
κ
2 − itf )ρ

′
f (a, 0),
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3.4 maass forms

and finally if m = ηa = tf = 0, then

ρKκf (a, 0) = ( 12 +
κ
2 )ρf (a, 0) + ρ′f (a, 0),

ρ′Kκf (a, 0) = ( 12 +
κ
2 )ρ
′
f (a, 0).

For the decrease operator Λκ, we have similarly:

ρΛκf (a,m) = ρf (a,m)×


−
(
t2f + (κ2 −

1
2 )

2
)
, m+ ηa > 0,

1, m+ ηa < 0,

if m = ηa = 0 6= tf , then we have

ρΛκf (a, 0) = (−1
2 +

κ
2 − itf )ρf (a, 0),

ρ′Λκf (a, 0) = (−1
2 +

κ
2 + itf )ρ

′
f (a, 0),

and finally if m = ηa = tf = 0, then

ρΛκf (a, 0) = (−1
2 +

κ
2 )ρf (a, 0)− ρ

′
f (a, 0),

ρ′Λκf (a, 0) = (−1
2 +

κ
2 )ρ
′
f (a, 0).

Proof. This is recorded in [AA18, Eq. (2.16)] or easily verified by means of the relation

amongst the Whittaker functions (A.3) and (A.2).

There is a continuum of important examples of Maass formsb, namely, the Eisenstein

series attached to a singular cusp. They will arise as a special case of the more general

Poincaré series, which we shall define here.

Definition 3.4.3. Let υ be a multiplier system of weight κ for Γ, a a cusp of Γ, and m ∈ Z

be an integer with m+ ηa ≥ 0. Then, we define the m-th Poincaré series attached to the

cusp a with respect to the multiplier system υ as

Uυ,κa,m(z, s) =
∑

γ∈Γ̂a \ Γ̂

υ(γ)σκ(σ
−1
a , γ) Im(σ−1a γz)se((m+ ηa)σ

−1
a γz)

(
j(σ−1a γ, z)

|j(σ−1a γ, z)|

)−κ
,

where z ∈H and s ∈ C with Re(s) > 1.

The Poincaré series exhibit a defining property which we shall show later in Proposi-

tion 3.6.2. The Eisenstein series now arise in the special case when the cusp a is singular.

b Pun intended.
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3.4 maass forms

Definition 3.4.4. Let υ be a multiplier system of weight κ for Γ and a a singular cusp

of Γ. Then, the 0-th Poincaré series attached to the cusp a with respect to the multiplier

system υ is called the Eisenstein series attached to the cusp a with respect to the multiplier

system υ and write

Eυ,κa (z, s) = Uυ,κa,0 (z, s).

Proposition 3.4.4. The Poincaré series are well-defined and converge absolutely locally uni-

formly on H× {s ∈ C|Re(s) > 1}. They are furthermore modular with respect to υ and Γ.

Proof. Let τ ∈ Γa := σaBσ
−1
a , say τ = σa ( 1 n0 1 ) σ

−1
a with n ∈ Z. Then, we have

Im(σ−1a τγz) = Im(( 1 n0 1 ) σ
−1
a γz) = Im(σ−1a γz),

j(σ−1a τγ, z) = j(( 1 n0 1 ) σ
−1
a γ, z) = j(( 1 n0 1 ) ,σ

−1
a γz)j(σ−1a γ, z) = j(σ−1a γ, z),

e((m+ ηa)σ
−1
a τγz) = e((m+ ηa)(σ

−1
a γz + n)) = e((m+ ηa)σ

−1
a γz)e(nηa),

υ(τγ) = υ(τ )υ(γ)σκ(τ , γ) = e(−nηa)υ(γ)σκ(τ , γ).

With the help of (3.2),(3.3),(3.4), we find

σκ(τ , γ)σκ(σ
−1
a , τγ) = σκ(σ

−1
a , τ )σκ(σ

−1
a τ , γ) = σκ(( 1 n0 1 ) σ

−1
a , γ) = σκ(σ

−1
a , γ).

This shows that the sum is well-defined modulo Γa. In order to show that the sum is

also well-defined modulo ±1, it is sufficient to show that

υ(γ)σκ(σ
−1
a , γ)

(
j(σ−1a γ, z)

|j(σ−1a γ, z)|

)κ
= υ(γ)j(γ, z)κ · j(σ−1a , γz)κ · 1

|j(σ−1a γ, z)|κ

remains unchanged when replacing γ with −γ. However, this is clearly the case since

each factor on the right-hand side remains unchanged, thereby concluding that the sum

is well-defined.

Let us now turn our attention to the uniform convergence of the series. We have

|Uυ,κa,m(z, s)| ≤
∑

γ∈Γ̂a \ Γ̂

Im(σ−1a γz)Re(s)e−2π(m+ηa) Im(σ−1
a γz).

Let us first consider the case m + ηa > 0. The function xαe−βx (x,α,β > 0) takes

its maximum of ( αeβ )
α at x = α

β . Thus, the sum stemming from the γ ∈ Γ̂a \ Γ̂ with

Im(σ−1a γz) > Re(s)
2π(m+ηa)

is bounded by(
Re(s)

2eπ(m+ ηa)

)Re(s)(
1+

20π(m+ ηa)

caRe(s)

)
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3.4 maass forms

by Lemma 3.2.8. The remaining sum is bounded by

−
∫ Re(s)

2π(m+ηa)

0
Y Re(s)e−2π(m+ηa)Y d


∑

γ∈Γ̂a \ Γ̂
Re(s)

2π(m+ηa)
≥Im(σ−1

a γz)>Y

1



=

∫ Re(s)
2π(m+ηa)

0


∑

γ∈Γ̂a \ Γ̂
Re(s)

2π(m+ηa)
≥Im(σ−1

a γz)>Y

1

 d
(
Y Re(s)e−2π(m+ηa)Y

)

�
∫ Re(s)

2π(m+ηa)

0

(
1+

10

caY

)
d
(
Y Re(s)e−2π(m+ηa)Y

)
=

(
Re(s)

2eπ(m+ ηa)

)Re(s)(
1+

20π(m+ ηa)

caRe(s)

)
−
∫ Re(s)

2π(m+ηa)

0
Y Re(s)e−2π(m+ηa)Y d

(
1+

10

caY

)
�
(

Re(s)

2eπ(m+ ηa)

)Re(s)(
1+

20π(m+ ηa)

caRe(s)

)
+

1

ca
(2π(m+ ηa))

1−Re(s)Γ (Re(s)− 1) ,

where we have used integration by parts and Lemma 3.2.8. This shows the proclaimed

convergence on the mentioned sets. The case m+ ηa = 0 is very similar. First, note that

we may only consider the sum where Γ̂aγ 6= Γ̂a. In this case, we have the bound

−
∫ 20

ca

0
Y Re(s)d

 ∑
γ∈Γ̂a \ Γ̂−Γ̂a

Im(σ−1
a γz)>Y

1



=

∫ 20
ca

0

 ∑
γ∈Γ̂a \ Γ̂−Γ̂a

Im(σ−1
a γz)>Y

1

 d
(
Y Re(s)

)

�
∫ 20

ca

0

10

caY
Re(s)Y Re(s)−1dY

=
10

ca

Re(s)

Re(s)− 1

(
20

ca

)Re(s)−1
,

which again shows the proclaimed convergence.

We move onto the last claim. We have

Uυ,κa,m(τz, s) =
∑

γ∈Γ̂a \ Γ̂

υ(γ)σκ(σ
−1
a , γ) Im(σ−1a γτz)se((m+ ηa)σ

−1
a γτz)

(
j(σ−1a γ, τz)

|j(σ−1a γ, τz)|

)−κ
.
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3.4 maass forms

Inserting the equations

υ(γ) = υ(γτ )σκ(γ, τ )υ(τ ),

σκ(σ
−1
a , γ) = σκ(σ

−1
a , γτ )σκ(γ, τ )σκ(σ

−1
a γ, τ ),

which follow from the definition of a multiplier system and (3.2), respectively, as well as

|j(σ−1a γ, τz)|κ

j(σ−1a γ, τz)κ
=
|j(σ−1a γτ , z)|κ

|j(τ , z)|κ
· j(τ , z)κ

j(σ−1a γτ , z)κ
σκ(σ

−1
a γ, τ ),

shows

Uυ,κa,m(τz, s) = υ(τ )
j(τ , z)κ

|j(τ , z)|κ
Uυ,κa,m(z, s),

which is exactly what we needed to show.

Proposition 3.4.5. The Poincaré series admit the following Fourier expansion:

(Uυ,κa,m|κσb)(z, s) = δa,by
se((m+ ηa)z)

+ ys
∑
n∈Z

 ∑
c∈Ca,b

Sυ,κa,b (m,n; c)

c2s
Bκ(c,m+ ηa,n+ ηb, y, s)

 e((n+ ηb)x), (3.16)

where Sυ,κa,b (m,n; c) is the Kloosterman sum as in (3.11) and

Bκ(c,m,n, y, s) = e
πi
2
κ

∫ ∞
−∞

e

(
− m

c2(t+ iy)
− nt

)
e−iκ arg(t+iy)

dt

(t2 + y2)s
. (3.17)

Proof. We have

(Uυ,κa,m|κσb)(z, s) =
(
j(σb, z)

|j(σb, z)|

)−κ
×

∑
γ∈Γ̂a \ Γ̂

υ(γ)σκ(σ
−1
a , γ) Im(σ−1a γσbz)

se((m+ ηa)σ
−1
a γσbz)

(
j(σ−1a γ,σbz)

|j(σ−1a γ,σbz)|

)−κ
.

We make use of the bijection Γ̂a \ Γ̂→ B̂ \σ−1a Γ̂σb given by γ 7→ τ = σ−1a γσb and find

(Uυ,κa,m|κσb)(z, s) =
(
j(σb, z)

|j(σb, z)|

)−κ
×

∑
τ∈B̂ \σ−1

a Γ̂σb

υ(σaτσ
−1
b )σκ(σ

−1
a ,σaτσ

−1
b ) Im(τz)se((m+ ηa)τz)

(
j(τσ−1b ,σbz)

|j(τσ−1b ,σbz)|

)−κ
.

We further simplify by making use of the relations(
j(σb, z)

|j(σb, z)|

)−κ( j(τσ−1b ,σbz)

|j(τσ−1b ,σbz)|

)−κ
= σκ(τσ

−1
b ,σb)

(
j(τ , z)

|j(τ , z)|

)−κ
,
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3.4 maass forms

σκ(τσ
−1
b ,σb) = σκ(τ , I)σκ(σ

−1
b ,σb)σκ(τ ,σ

−1
b ) = σκ(τ ,σ

−1
b ),

as well as

σκ(σ
−1
a ,σaτσ

−1
b ) = σκ(I, τσ

−1
b )σκ(σ

−1
a ,σa)σκ(σa, τσ

−1
b ) = σκ(σa, τσ

−1
b ),

which follow from (3.2) and (3.3). We conclude

(Uυ,κa,m|κσb)(z, s)

=
∑

τ∈B̂ \σ−1
a Γ̂σb

υ(σaτσ
−1
b )σκ(σa, τσ

−1
b )σκ(τ ,σ

−1
b ) Im(τz)se((m+ ηa)τz)

(
j(τ , z)

|j(τ , z)|

)−κ
.

We are now at a state where we can make use of the double-coset representation given

by Proposition 3.2.6. The contribution from B̂, which is only present if the cusps a and

b are equivalent, is given by

δa,bυ(σaσ
−1
b )σκ(σa,σ

−1
b )σκ(I,σ

−1
b )yse((m+ ηa)z)

(
j(I, z)

|j(I, z)|

)−κ
= δa,by

se((m+ ηa)z).

(3.18)

Let c ∈ Ca,b, dmod cZ, n ∈ Z and consider the contribution from the matrix ωc,d ( 1 n0 1 ).

We have

υ(σaωc,d ( 1 n0 1 ) σ
−1
b ) = υ(σaωc,dσ

−1
b )υ(σb ( 1 n0 1 ) σ

−1
b )σκ(σaωc,dσ

−1
b ,σb ( 1 n0 1 ) σ

−1
b ). (3.19)

Now, we claim

υ(σb ( 1 n0 1 ) σ
−1
b ) = e(ηbn). (3.20)

This is certainly true for n = 0, 1 and therefore it suffices to prove

σκ(σb ( 1 a0 1 ) σ
−1
b ,σb ( 1 b0 1 ) σ

−1
b ) = 1, ∀a, b ∈ Z.

Now, by (3.2), (3.5), and (3.6), we have

σκ(σb ( 1 a0 1 ) σ
−1
b ,σb ( 1 b0 1 ) σ

−1
b ) =

σκ(σb ( 1 a0 1 ) , (
1 b
0 1 ) σ

−1
b )σκ(σ

−1
b ,σb ( 1 b0 1 ) σ

−1
b )

σκ(σb ( 1 a0 1 ) ,σ
−1
b )

=
σκ(σb

(
1 a+b
0 1

)
,σ−1b )

σκ(σb ( 1 a0 1 ) ,σ
−1
b )

= 1,

since by (3.2), (3.6), and (3.3), we have

σκ(σb ( 1 a0 1 ) ,σ
−1
b ) =

σκ(σb ( 1 a0 1 ) σ
−1
b , I)σκ(σb,σ

−1
b )

σκ(σb ( 1 a0 1 ) σ
−1
b ,σb)

= 1.
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3.4 maass forms

Furthermore, we have by (3.2) twice and (3.6), that

σκ(σaωc,dσ
−1
b ,σb ( 1 n0 1 ) σ

−1
b )=

σκ(σa,ωc,dσ
−1
b )

σκ(σa,ωc,d ( 1 n0 1 ) σ
−1
b )σκ(ωc,dσ

−1
b ,σb ( 1 n0 1 ) σ

−1
b )

=
σκ(σa,ωc,dσ

−1
b )σκ(ωc,d,σ

−1
b )

σκ(σa,ωc,d( 1 n0 1 )σ
−1
b )σκ(ωc,d,( 1 n0 1 )σ

−1
b )σκ(σ

−1
b ,σb( 1 n0 1 )σ

−1
b )

=
σκ(σa,ωc,dσ

−1
b )σκ(ωc,d,σ

−1
b )

σκ(σa,ωc,d ( 1 n0 1 ) σ
−1
b )σκ(ωc,d, ( 1 n0 1 ) σ

−1
b )

.

(3.21)

We also have

j(ωc,d ( 1 n0 1 ) , z) = j(ωc,d, z + n). (3.22)

Thus using (3.19), (3.20), (3.21), and (3.22) we find that the contribution from ωc,d ( 1 n0 1 ),

n ∈ Z, is

∑
n∈Z

υ(σaωc,dσ
−1
b )e(−ηbn)σκ(σa,ωc,dσ−1b )σκ(ωc,d,σ

−1
b )

× Im(ωc,d(z + n))se((m+ ηa)ωc,d(z + n))

(
j(ωc,d, z + n)

|j(ωc,d, z + n)|

)−κ
. (3.23)

By using Poisson summation, we find

∑
n∈Z

e(−ηbn) Im(ωc,d(z + n))se((m+ ηa)ωc,d(z + n))

(
j(ωc,d, z + n)

|j(ωc,d, z + n)|

)−κ
=
∑
n∈Z

∫ ∞
−∞

e(−ηbt) Im(ωc,d(z + t))se((m+ ηa)ωc,d(z + t))

(
j(ωc,d, z + t)

|j(ωc,d, z + t)|

)−κ
e(−nt)dt.

(3.24)

It is in the next step which forces us to always choose c > 0 in the definition of the

Kloosterman sum, despite the fact that the Poincaré series are well-defined modulo ±1.

Let ωc,d =
(
a b
c d

)
. Then, we have

ωc,d(z + t) =
a

c
− 1

c2(z + t+ d
c )

and j(ωc,d, z + t) = c(z + t+ d
c ).

Shifting the integral in (3.24) by −x− d
c , we have that (3.24) is equal to

∑
n∈Z

∫ ∞
−∞

e(−ηb(t− x− d
c )) Im

(
a

c
− 1

c2(t+ iy)

)s
· e
(
(m+ ηa)

(
a

c
− 1

c2(t+ iy)

))
e−iκ arg(t+iy)e(−n(t− x− d

c ))dt. (3.25)

On recalling (3.17), we find that (3.24) is further equal to

e−
πi
2
κ
∑
n∈Z

e((n+ ηb)x)e

(
(m+ ηa)

a

c
+ (n+ ηb)

d

c

)
ys

c2s
Bκ(c,m+ ηa,n+ ηb, y, s). (3.26)
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3.4 maass forms

By using this in (3.23) and summing over dmod cZ and c ∈ Ca,b, we confirm the pro-

claimed Fourier expansion.

Next, we turn our attention to the special case of the Eisenstein series, i.e. m = ηa = 0.

We need to analyse the integral Bκ further:

Bκ(c, 0,n, y, s) = e
πi
2
κ

∫ ∞
−∞

e(−nt)e−iκ arg(t+iy) dt

(t2 + y2)s

= y1−2s
∫ ∞
−∞

e(−nyu)e−iκ arg(1−iu) du

(1+ u2)s
.

(3.27)

Let us now define

B(y) =

∫ ∞
−∞

e(−yu)(1− iu)−
κ
2 (1+ iu)

κ
2

du

(1+ u2)s
. (3.28)

Then, we have Bκ(c, 0,n, y, s) = y1−2sB(ny). Letting t = iu we find

B(y) = i

∫ −i∞
i∞

e−2πyt(1− t)−
κ
2
−s(1+ t)

κ
2
−sdt.

Suppose y > 0. Then, we make the substitution u = t− 1 and shifting the contour to a

lock-hole integral coming from infinity looping around 0 in positive direction and going

back to infinity, we arrive at

B(y) = ie−2πy
∫ (0+)

∞
e−2πyu(−u)−

κ
2
−s(2+ u)

κ
2
−sdu.

By substituting t = 2πyu, we find

B(y) = ie−2πy(2πy)
κ
2
+s−12

κ
2
−s
∫ (0+)

∞
e−t(−t)−

κ
2
−s
(
1+

t

4πy

)κ
2
−s
du.

By inserting the definition of the Whittaker function (A.1), we find

B(y) =
πsys−1

Γ(κ2 + s)
Wκ

2
, 1
2
−s(4πy), ∀y > 0.

Similarly, we find

B(y) =
πs|y|s−1

Γ(−κ
2 + s)

W−κ
2
, 1
2
−s(4π|y|), ∀y < 0.

By either taking limits or directly from the equation (A.20), we find

B(0) = 22−2sπ
Γ(2s− 1)

Γ(s− κ
2 )Γ(s+

κ
2 )

.

By putting this information back into (3.27), we find for n+ ηb 6= 0

Bκ(c, 0,n+ ηb, y, s) =
πs|n+ ηb|s−1

Γ(s+ sign(n+ ηb)
κ
2 )
y−sWsign(n+ηb)

κ
2
, 1
2
−s(4π|n+ ηb|y)
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3.5 spectral theorem

and

Bκ(c, 0, 0, y, s) = 22−2sπ
Γ(2s− 1)

Γ(s+ κ
2 )Γ(s−

κ
2 )
y1−2s.

We have concluded the following proposition.

Proposition 3.4.6. The Eisenstein series admit the following Fourier expansion

(Eυ,κa |κσb)(z, s) = δa,by
s + δηb,02

2−2sπ
Γ(2s− 1)

Γ(s− κ
2 )Γ(s+

κ
2 )
Zυ,κa,b (0, 0; s)y

1−s

+ πs
∑
n∈Z

n+ηb 6=0

|n+ ηb|s−1

Γ(s+ sign(n+ ηb)
κ
2 )
Zυ,κa,b (0,n; s)Wsign(n+ηb)

κ
2
, 1
2
−s(4π|n+ ηb|y)e((n+ ηb)x),

(3.29)

where we recall the Kloosterman zeta function Zυ,κa,b from (3.14).

Proposition 3.4.7. The Eisenstein series Eυ,κa (·, s) for Re(s) > 1 are Maass forms with eigen-

value s(1− s).

Proof. We have already shown that Eυ,κa (·, s) is modular and satisfies the growth condi-

tions at the cusps, thus it suffices to show that is also an analytic eigenfunction with

eigenvalue s(1− s). To this end, note that Eυ,κa (·, s) is a locally absolutely uniformly con-

vergent linear combination of terms of the shape ys|κγ. Now, ys is a real analytic function,

therefore so is ys|κγ and furthermore Eυa (·, s). Finally, we have −∆κys = s(1− s)ys and

by Lemma 3.4.1 ∆κ commutes with the slash operators. Note that we are allowed to in-

terchange ∆κ with the infinite sum due to the afore mentioned convergence of analytic

functions.

3.5 spectral theorem

The goal of this section is to understand the spectrum of −∆κ. For this matter, we con-

sider its unique self-adjoint extension (which we shall also denote −∆κ) to the Hilbert

space Hκ(Γ, υ), which consists of all equivalence classes of with respect to y−2dxdy

measurable functions f ∈ Fκ(Γ, υ) that are square-integrable with respect to the inner

product

〈f , g〉 =
∫
FΓ

f(z)g(z)
dxdy

y2
. (3.30)

Where as usual two functions f , g are equivalent if and only if ‖f − g‖2 = 0, where

‖f‖2 = 〈f , f〉
1
2 denotes the associated norm. In what follows, we shall not differentiate
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3.5 spectral theorem

between a function and its equivalence class. We may also extend the increase and

decrease operators Kκ, respectively Λκ, to Hκ(Γ, υ) in a manner such that the equalities

in Lemma 3.4.2 continue to hold.

Lemma 3.5.1. Let f , g ∈ Hκ(Γ, υ). Then, we have the following equalities

〈g,−∆κf〉 = 〈Kκg,Kκf〉 − κ
2 (1+

κ
2 )〈g, f〉,

〈g,−∆κf〉 = 〈Λκg,Λκf〉+ κ
2 (1−

κ
2 )〈g, f〉.

Proof. See [Roe66, Satz 3.1].

It follows from this that all eigenvalues of the Laplace–Beltrami operator −∆κ on

Hκ(Γ, υ) are ≥ |κ|2 (1− |κ|2 ). Let us denote with Hκ(Γ, υ,λ) = A∞κ (Γ, υ,λ) ∩Hκ(Γ, υ) the

space of all square-integrable Maass forms with eigenvalue λ.

Lemma 3.5.2. Let f ∈ Hκ(Γ, υ). Then, we have

1. −∆κf = −κ
2 (1+

κ
2 )f ⇔ Kκf = 0⇔ y

κ
2 f(z) is holomorphic,

2. −∆κf = κ
2 (1−

κ
2 )f ⇔ Λκf = 0⇔ y−

κ
2 f(z) is holomorphic.

Proof. This is a combination of [Roe66, Lemma 3.2] and the previous lemma.

We now consider the subspace of cuspidal functions Cκ(Γ, υ), which consists of all

functions f ∈ Hκ(Γ, υ) which vanish at every singular cusp, that is for every singular

cusp a we have ∫ 1

0
(f |κσa)(z)dx = 0, for almost all y.

The Laplace–Beltrami operator ∆κ maps the space Cκ(Γ, υ) into itself. We are now able

to state the spectral theorem for the cuspidal space.

Theorem 3.5.3. There is an at most countable orthonormal basis of cuspidal Maass forms

Bcκ(Γ, υ)⊆ A∞κ (Γ, υ)∩Cκ(Γ, υ) with eigenvalues λh ∈ [ |κ|2 (1− |κ|2 ),∞[ for every h ∈ Bcκ(Γ, υ).

Each eigenvalue appears with finite multiplicity and the sum∑
h∈Bcκ(Γ,υ)
λh 6=0

λ−2h

converges. For any f ∈ Cκ(Γ, υ) we have the expansion (in norm)

f(z) =
∑

h∈Bcκ(Γ,υ)

〈f ,h〉h(z).

The right-hand side further converges absolutely uniformly in z ∈H.
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Proof. See [Roe66, Chapter 8].

Let Nκ(Γ, υ) ⊆ Hκ(Γ, υ) denote the orthogonal complement of Cκ(Γ, υ). Before stating

the spectral theorem for Nκ(Γ, υ), we need to collect a couple more facts.

Proposition 3.5.4. The Eisenstein series Eυ,κa (z0, s) and its Fourier coefficients (3.29) admit

meromorphic continuation to the whole complex plane s ∈ C with at most simple poles in

[0, 12 [∪]
1
2 , 1]. If s0 ∈] 12 , 1] is such a pole, then s0 is also a simple pole of Eυ,κa (z, s) for every

z ∈H, and a simple pole of its 0-th Fourier at the cusp a, in other words a simple pole of

Γ(2s− 1)

Γ(s− κ
2 )Γ(s+

κ
2 )
Zυ,κa,a (0, 0; s).

For s not a pole, the Eisenstein series Eυ,κa (·, s) are Maass forms and their Fourier expansions

(3.29) continue to hold.

Proof. See [Roe66, Chapters 10 & 11].

Let s0 ∈] 12 , 1] be a pole of Eυa (z, s). Then, the residual function

f(z) = Res
s=s0
Eυ,κa (z, s) (3.31)

is a square-integrable Maass form with eigenvalue s0(1− s0), that does not vanish at the

cusp a. The span of these non-cuspidal Maass forms is called the residual spectrum. We

are now able to state the spectral theorem for the space Nκ(Γ, υ).

Theorem 3.5.5. There is a complete finite set of orthonormal eigenfunctions Brκ(Γ, υ) and ei-

genpackets Pκ(Γ, υ). The eigenfunctions are given by a collection of normalised residual Maass

forms (3.31) and the eigenpackets are given by the Eisenstein series attached to singular cusps.

For any f ∈ Nκ(Γ, υ) we have the expansion (in norm)

f(z) =
∑

h∈Brκ(Γ,υ)

〈f ,h〉h(z) + 1

4π

∑
a sing.

∫ ∞
−∞
〈f , Eυ,κa (·, 12 + ir)〉Eυ,κa (z, 12 + ir)dr.

Here, 〈f , Eυ,κa (·, 12 + ir)〉 is to be understood as in (3.30) if the integral converges absolutely,

otherwise as the limit

lim
g→f
〈g, Eυ,κa (·, 12 + ir)〉,

where the limit is taken over the functions g ∈ Hκ(Γ, υ) with compact support in FΓ which

converge in norm to f . The integral over r with respect to z in a compact subset K ⊆ H is

absolutely convergent. In other words,

lim
µ→∞

∫ µ

−µ
| . . . |dr

converges uniformly with respect to z ∈ K.
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3.6 pre-trace formulae

Proof. See [Roe66, Chapter 12].

Let us set Bκ(Γ, υ) = Bcκ(Γ, υ) ∪ Brκ(Γ, υ). Then, Bκ(Γ, υ) together with Pκ(Γ, υ) form

a complete set of eigenfunctions and eigenpackets for the space Hκ(Γ, υ). As a con-

sequence, we have the following Parseval identity.

Proposition 3.5.6. For f , g ∈ Hκ(Γ, υ) we have

〈f , g〉 =
∑

h∈Bκ(Γ,υ)

〈f ,h〉〈g,h〉+ 1

4π

∑
a sing.

∫ ∞
−∞
〈f , Eυ,κa (·, 12 + ir)〉〈g, Eυ,κa (·, 12 + ir)〉dr. (3.32)

Proof. This follows from the previous spectral theorems in combination with [Roe66,

Lemma 5.2 & Eqs. (12.15)-(12.21)] and the polarisation identity.

3.6 pre-trace formulae

The goal of this section is to derive so-called pre-trace formulae, which shall then be

used in Section 3.10 to derive the Kuznetsov trace formula. We follow the method ori-

ginally developed by Kuznetsov [Kuz80] and evaluate inner products with Poincaré

series in two ways. The results we shall state here are generalisations of the work of

Deshouillers–Iwaniec [DI83], Ahlgren–Andersen [AA18], and Proskurin [Pro05, Pro79].

We will make frequent use of estimates of the latter two references. We shall also point

out a second method to develop these pre-trace formulae, which is based on the mero-

morphic continuation of the Kloosterman zeta function Zυa,b(m,n; s). This method is

employed for example in [Iwa02].

Proposition 3.6.1. The Poincaré series Uυ,κa,m(·, s) with m+ ηa > 0 and Re(s) > 1 are elements

of Hκ(Γ, υ).

Proof. By taking Proposition 3.4.4 into account, it is sufficient to prove that the Poincaré

series are square-integrable.

Recall the Fourier expansion of the Poincaré series (3.16) and the integral Bκ from

(3.17). By shifting the contour integral in Bκ from the real line to Im t = −1
2 sign(n+ ηb)y

as in [Pro05], one finds

Bκ(c,m+ ηa,n+ ηb, y, s)�A,B e−π|n+ηb|yy1−2Re(s), ∀Re(s) > 1

2
+A, | Im(s)| ≤ B.

(3.33)
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3.6 pre-trace formulae

The estimate (3.13) further shows

∑
c∈Ca,b

|Sυ,κa,b (m,n; c)|
c2Re(s)

�a,b,A 1, ∀Re(s) > 1+A.

Hence, we conclude from Proposition 3.4.5 that

Uυ,κa,m(σbz, s)�A,B,a,b y
1−Re(s), ∀Re(s) > 1+A, | Im(s)| < B. (3.34)

It easily follows from this that Uυ,κa,m(·, s) is square-integrable.

Proposition 3.6.2. Let h ∈ Bκ(Γ, υ), c a singular cusp with respect to Γ and υ, r ∈ R and

m+ ηa > 0. Then, for Re(s) > 1 we have

〈Uυ,κa,m(·, s),h〉 = ρh(a,m)(4π(m+ ηa))
1−s Γ(s− 1

2 − ith)Γ(s−
1
2 + ith)

Γ(s− κ
2 )

and

〈Uυ,κa,m(·, s), Eυ,κc (·, 12 + ir)〉

= π
1
2
−ir(4π(m+ ηa))

1−s(m+ ηa)
− 1

2
−irZυ,κc,a (0,m; 12 + ir)

Γ(s− 1
2 + ir)Γ(s− 1

2 − ir)
Γ(s− κ

2 )Γ(
1
2 +

κ
2 − ir)

.

Proof. We have that 〈Uυ,κa,m(·, s),h〉 equals∫
FΓ

∑
γ∈Γ̂a \ Γ̂

υ(γ)σκ(σ
−1
a , γ) Im(σ−1a γz)se((m+ ηa)σ

−1
a γz)

(
j(σ−1a γ, z)

|j(σ−1a γ, z)|

)−κ
h(z)

dxdy

y2
.

We recall that the Maass form h has at most polynomial growth at each cusp. In fact, it

must satisfy o(Im(σ−1b z)
1
2 ) at every cusp b in order to be square-integrable. On the other

hand the Poincaré series satisfy the bound o(1) at every cusp (3.34). These facts together

with the absolute locally uniform convergence of the sum (see Proposition 3.4.4) allow

us to interchange the integral with the infinite sum. By inserting a further change of

variables, we arrive at

∑
γ∈Γ̂a \ Γ̂

∫
σ−1
a γFΓ̂

υ(γ)σκ(σ
−1
a , γ)e((m+ ηa)z)

(
j(σ−1a γ, γ−1σaz)

|j(σ−1a γ, γ−1σaz)|

)−κ
h(γ−1σaz)

dxdy

y2−s

=

∫
⋃
γ∈Γ̂a \ Γ̂ σ

−1
a γFΓ̂

e((m+ ηa)z)(h|κσa)(z)
dxdy

y2−s
. (3.35)
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3.6 pre-trace formulae

In the second line, we have used the modularity of h and the following equality

υ(γ)σκ(σ
−1
a , γ)

(
j(σ−1a γ, γ−1σaz)

|j(σ−1a γ, γ−1σaz)|

)κ
υ(γ−1)

(
j(γ−1,σaz)

|j(γ−1,σaz)|

)κ(
j(σa, z)

|j(σa, z)|

)κ
=σκ(γ, γ−1)σκ(σ

−1
a , γ)

(
j(σ−1a γ, γ−1σaz)

|j(σ−1a γ, γ−1σaz)|

)κ(
j(γ−1σa, z)

|j(γ−1σa, z)|

)κ
σκ(γ

−1,σa)

=σκ(γ, γ−1)σκ(σ
−1
a , γ)σκ(σ

−1
a γ, γ−1σa)σκ(γ

−1,σa)

=σκ(γ, γ−1)σκ(σ
−1
a ,σa)σκ(γ, γ

−1σa)σκ(γ
−1,σa)

=σκ(γ, γ−1)σκ(I,σa)σκ(γ, γ
−1)

=1.

Now,
⋃
γ∈Γ̂a \ Γ̂ σ

−1
a γFΓ̂ is a fundamental domain for Γ̂∞ and we may assume it is {z ∈

H|0 ≤ Re(z) ≤ 1}. Hence, (3.35) is equal to∫ ∞
0

∫ 1

0
e((m+ ηa)z)(h|κσa)(z)ys−2dxdy.

By using the Fourier expansion of h at the cusp a (3.15) and exchanging summation with

the integral over x, which we may due to the convergence of the Fourier expansion, we

find that only the (m+ ηa)-th Fourier coefficient survives the integral over x and thus

(3.35) is further equal to

ρh(a,m)

∫ ∞
0

e−2π(m+ηa)yWκ
2
,ith(4π(m+ ηa)y)y

s−2dy.

For Re(s) > |κ|
2 , we have Re(s) > Re(ith)− 1

2 and thus we may use (A.5) to evaluate the

latter integral:

ρh(a,m)(4π(m+ ηa))
1−s Γ(s− 1

2 − ith)Γ(s−
1
2 + ith)

Γ(s− κ
2 )

.

Hence, we have proved the equality for Re(s) > max{ |κ|2 , 1}. Now, the right-hand side

admits a meromorphic continuation to Re(s) > 1 and the left-hand side admits an

analytic continuation to Re(s) > 1. Hence, the singularities must be removable and

we have proved the identity for Re(s) > 1. In order to evaluate 〈Uυ,κa,m(·, s), Eυ,κc (·, 12 +

ir)〉, we may proceed as before, since the Eisenstein series satisfy (Eυ,κc |σb)(z, 12 + ir) =

Or(y
1
2 log(y)) as y → ∞ for every cusp b, which follows from the Fourier expansion

(3.29). We arrive at

π
1
2
−ir (m+ ηa)

− 1
2
−ir

Γ( 12 +
κ
2 − ir)

Zυ,κc,a (0,m; 12 + ir)

∫ ∞
0

e−2π(m+ηa)yWκ
2
,−ir(4π(m+ ηa)y)y

s−2dy

= π
1
2
−ir(4π(m+ ηa))

1−s(m+ ηa)
− 1

2
−irZυ,κc,a (0,m; 12 + ir)

Γ(s− 1
2 + ir)Γ(s− 1

2 − ir)
Γ(s− κ

2 )Γ(
1
2 +

κ
2 − ir)

.
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3.6 pre-trace formulae

Remark 3.6.3. Another way to see that the singularities on the right-hand side are re-

movable is to classify all the eigenvalues in [ |κ|2 (1− |κ|2 ), 0[. This has been done in [Roe66,

Satz 5.4].

Naturally, one may ask how a similar proposition for negative Fourier coefficients may

look like. To this end, we shall employ some trickery. A simple computation shows that

for m+ ηa < 0 we have that Uυ,−κa,−m−δnsa (·, s) is well-defined and lives in the spaceHκ(Γ, υ).

Therefore, a simple complex conjugation of Proposition 3.6.2 shows the following.

Proposition 3.6.4. Let h ∈ Bκ(Γ, υ), c a singular cusp with respect to Γ and υ, r ∈ R and

m+ ηa < 0. Then, for Re(s) > 1 we have

〈Uυ,−κa,−m−δnsa (·, s),h〉 = ρh(a,m)(4π|m+ ηa|)1−s
Γ(s− 1

2 − ith)Γ(s−
1
2 + ith)

Γ(s+ κ
2 )

and

〈Uυ,−κa,−m−δnsa (·, s), Eυ,κc (·, 12 + ir)〉

= π
1
2
−ir(4π|m+ ηa|)1−s|m+ ηa|−

1
2
−irZυ,κc,a (0,m; 12 + ir)

Γ(s− 1
2 + ir)Γ(s− 1

2 − ir)
Γ(s+ κ

2 )Γ(
1
2 −

κ
2 − ir)

.

Proof. All that is left to note is ηυa + ηυa = δnsa and (h|−κσa) = (h|κσa). Therefore,

ρh(a,−m− δ
ns
a ) = ρh(a,m). For the Eisenstein series, we find similarly Eυ,κc (z, 12 + ir) =

Eυ,−κc (z, 12 − ir) and Zυ,−κc,a (0,−m− δnsa ; 12 − ir) = Z
υ,κ
c,a (0,m; 12 + ir).

Corollary 3.6.5. The series Uυ,κa,m(z0, s) for m+ ηa > 0 has a meromorphic continuation to all

of s ∈ C. If s0 is a pole of Uυ,κa,m(z0, s), then it is also a pole of Uυ,κa,m(z, s) for every z ∈ H.

Furthermore, the Fourier coefficients (3.16) of Uυ,κa,m(z, s) admit a meromorphic continuation to

all of s ∈ C and the equality (3.16) continues to hold for s not a pole. An analogous statement

holds for Uυ,−κa,−m−δnsa when m+ ηa < 0.

Proof. All of this follows from Proposition 3.6.2, respectively Proposition 3.6.4, and the

spectral expansion stemming from the conjunction of the Theorems 3.5.3 and 3.5.5.

Proposition 3.6.6. Let m+ ηa,n+ ηb > 0 and Re(s1), Re(s2) > 1. Then, we have

〈Uυ,κa,m(·, s1),U
υ,κ
b,n (·, s2)〉 = δa,bδm,n

Γ(s1 + s2 − 1)

(2π(m+ ηa + n+ ηb))s1+s2−1
− i
(
m+ ηa
n+ ηb

) s2−s1
2

× 23−s1−s2
∑
c∈Ca,b

Sυ,κa,b (m,n; c)

cs1+s2

∫
L
Ks1−s2

(
4π
√
(m+ ηa)(n+ ηb)

c
q

)(
q+

1

q

)s1+s2−2
qκ−1dq,

where L is the contour along the semicircle |q| = 1 from −i to i with Re(q) > 0.
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3.6 pre-trace formulae

Proof. This proposition is essentially the same as [Pro05, Lemma 1] and we follow its

proof closely. By unfolding the second Poincaré series (as in the beginning of Proposition

3.6.2), we find that 〈Uυ,κa,m(·, s1),Uυ,κb,n (·, s2)〉 is equal to∫ ∞
0

∫ 1

0
(Uυ,κa,m|κσa)(z, s1)e((n+ ηb)z)y

s2−2dxdy.

By inserting the Fourier expansion of (Uυ,κa,m|κσa)(z, s1) (see Proposition 3.4.5) and inter-

changing the integral over x with the summation, we further evaluate this to

δa,bδm,n
Γ(s1 + s2 − 1)

(2π(m+ ηa + n+ ηb))s1+s2−1

+

∫ ∞
0

 ∑
c∈Ca,b

Sυ,κa,b (m,n; c)

c2s1
Bκ(c,m+ ηa,n+ ηb, y, s1)

 ys1+s2−2e−2π(n+ηb)ydy.

Due to (3.33), we may further exchange summation and integral assuming Re(s2) >

Re(s1). The integral∫ ∞
0

Bκ(c,m+ ηa,n+ ηb, y, s1)y
s1+s2−2e−2π(n+ηb)ydy

has been evaluated asc

− i23−s1−s2 1

cs2−s1

(
m+ ηa
n+ ηb

) s2−s1
2

×
∫
L
Ks1−s2

(
4π
√
(m+ ηa)(n+ ηb)

c
q

)(
q+

1

q

)s1+s2−2
qκ−1dq

in [Pro05, Eqs. (25),(26)]. This concludes the proposition for Re(s2) > Re(s1). The case

Re(s1) > Re(s2) follows by symmetry in combination with Proposition 3.3.2 and, finally,

the case Re(s1) = Re(s2) by continuity.

Proposition 3.6.7. Let m+ ηa > 0, n+ ηb < 0, and Re(s1), Re(s2) > 1. Then, we have

〈Uυ,κa,m(·, s1),U
υ,−κ
b,−n−δnsb

(·, s2)〉 = π23−s1−s2
Γ(s1 + s2 − 1)

Γ(s1 − κ
2 )Γ(s2 +

κ
2 )

(
m+ ηa
−n− ηb

) s2−s1
2

×
∑
c∈Ca,b

Sυ,κa,b (m,n; c)

cs1+s2
Ks1−s2

(
4π

√
−(n+ ηb)(m+ ηa)

c

)

Proof. As in Proposition 3.6.6, we unfold the first Poincaré series and find

〈Uυ,κa,m(·, s1),U
υ,−κ
b,−n−δnsb

(·, s2)〉 =
∫ ∞
0

∫ 1

0
ys1−2e((m+ ηa)z)(Uυ,−κb,−n−δnsb

|−κσa)(z, s2)dxdy.

(3.36)

c Recall that our definition of Bκ contains an additional factor of e
πi
2 κ.
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3.6 pre-trace formulae

By inserting the Fourier expansion for the Poincaré series, see Proposition 3.4.5, together

with Proposition 3.3.2, and exchanging summation with integral, we find that (3.36)

further equals∫ ∞
0

ys1+s2−2e−2π(m+ηυa )y
∑
c∈Ca,b

Sυ,κa,b (m,n; c)

c2s2
B−κ(c,−n− ηυb ,−m− ηυa , y, s2)dy. (3.37)

For Re(s1) > Re(s2), we are allowed to exchange summation and integral once more,

thus it remains to evaluate the integral∫ ∞
0

ys1+s2−2e−2π(m+ηa)yB−κ(c,−n− ηυb ,−m− ηυa , y, s2)dy. (3.38)

By inserting the definition (3.17) of the integral B−κ, substituting t = uy, and interchan-

ging the integrals, which is allowed in view of their absolute convergence, we arrive

at

e−
πi
2
κ

∫ ∞
−∞

eiκ arg(u+i)(u2 + 1)−s2∫ ∞
0

ys1−s2−1 exp

(
−2π

(
−n− ηυb
c2y(1− iu)

+ (m+ ηυa )y(1− iu)
))

dydu. (3.39)

By making use of the integral representation (A.15), we find that the inner integral is

equal to

2

(√
−n− ηυb
m+ ηυa

1

c(1− iu)

)s1−s2
Ks2−s1

(
4π

√
−(n+ ηυb )(m+ ηυb )

c

)
.

By inserting this back into (3.39) and using arg(u+ i) = π
2 + arg(1− iu), we find that

(3.39) is equal to

2

(
−n− ηυb

(m+ ηυa )c
2

) s1−s2
2

Ks2−s1

(
4π

√
−(n+ ηυb )(m+ ηυb )

c

)

×
∫ ∞
−∞

(1− iu)−s1+
κ
2 (1+ iu)−s2−

κ
2 du. (3.40)

The latter integral equates to∫ ∞
−∞

(1− iu)−s1+
κ
2 (1+ iu)−s2−

κ
2 du = π22−s1−s2

Γ(s1 + s2 − 1)

Γ(s1 − κ
2 )Γ(s2 +

κ
2 )

by (A.20). This proves the proposition in the case Re(s1) > Re(s2). The case Re(s2) >

Re(s1) is very similar. There, one needs to unfold the second Poincaré series rather than

the first. The case Re(s1) = Re(s2) follows once again from continuity.
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3.6 pre-trace formulae

By evaluating 〈Uυ,κa,m(·, s1),Uυ,κb,n (·, s2)〉, respectively 〈Uυ,κa,m(·, s1),Uυ,−κb,−n−δnsb
(·, s2)〉, in a

second way, by using Parseval’s identity (3.32), we arrive at the pre-trace formulae. In

order to state them in a compact form, we set

Λ(s1, s2, r) = Γ(s1 − 1
2 − ir)Γ(s1 −

1
2 + ir)Γ(s2 − 1

2 − ir)Γ(s2 −
1
2 + ir).

Proposition 3.6.8. Let σ, t ∈ R with σ > 1 and m+ ηa,n+ ηb > 0. Then, we have

∑
c∈Ca,b

Sυ,κa,b (m,n; c)

c2σ

∫
L
Kit

(
4π

√
(m+ ηa)(n+ ηb)

c
q

)(
q+

1

q

)2σ−2
qκ−1dq

= −iδa,bδm,n
Γ(2σ− 1)

4(π(m+ ηa + n+ ηb))2σ−1
+ i

21−2σπ2−2σ((m+ ηa)(n+ ηb))
1−σ

Γ(σ− κ
2 +

it
2 )Γ(σ−

κ
2 −

it
2 )

×

{ ∑
h∈Bκ(Γ,υ)

ρh(a,m)ρh(b,n)Λ(σ+ it
2 ,σ−

it
2 , th) +

1

4
√
(m+ ηa)(n+ ηb)

×
∑
c sing.

∫ ∞
−∞

(
m+ ηa
n+ ηb

)−ir Zυ,κc,a (0,m; 12 + ir)

Γ( 12 +
κ
2 − ir)

Zυ,κc,b (0,n; 12 + ir)

Γ( 12 +
κ
2 + ir)

Λ(σ+ it
2 ,σ−

it
2 , r)dr

}
.

Proposition 3.6.9. Let σ, t ∈ R with σ > 1 and m+ ηa,n+ ηb < 0. Then, we have

∑
c∈Ca,b

Sυ,κa,b (m,n; c)

c2σ

∫
L
Kit

(
4π

√
(m+ ηa)(n+ ηb)

c
q

)(
q+

1

q

)2σ−2
q−κ−1dq

= −iδa,bδm,n
Γ(2σ− 1)

4(π|m+ ηa + n+ ηb|)2σ−1
+ i

21−2σπ2−2σ((m+ ηa)(n+ ηb))
1−σ

Γ(σ+ κ
2 +

it
2 )Γ(σ+ κ

2 −
it
2 )

×

{ ∑
h∈Bκ(Γ,υ)

ρh(a,m)ρh(b,n)Λ(σ+ it
2 ,σ−

it
2 , th) +

1

4
√
(m+ ηa)(n+ ηb)

×
∑
c sing.

∫ ∞
−∞

(
m+ ηa
n+ ηb

)−ir Zυ,κc,a (0,m; 12 + ir)

Γ( 12 −
κ
2 − ir)

Zυ,κc,b (0,n; 12 + ir)

Γ( 12 −
κ
2 + ir)

Λ(σ+ it
2 ,σ−

it
2 , r)dr

}
.

Proposition 3.6.10. Let σ, t ∈ R with σ > 1 and m+ ηa > 0 ,n+ ηb < 0. Then, we have

∑
c∈Ca,b

Sυ,κa,b (m,n; c)

c2σ
K2it

(
4π

√
(m+ ηa)|n+ ηb|

c

)
=

(2π)1−2σ((m+ ηa)|n+ ηb|)1−σ

Γ(2σ− 1)

×

{ ∑
h∈Bκ(Γ,υ)

ρh(a,m)ρh(b,n)Λ(σ+ it,σ− it, th) +
1

4
√
(m+ ηa)|n+ ηb|

×
∑
c sing.

∫ ∞
−∞

∣∣∣∣m+ ηa
n+ ηb

∣∣∣∣−ir Zυ,κc,a (0,m; 12 + ir)

Γ( 12 +
κ
2 − ir)

Zυ,κc,b (0,n; 12 + ir)

Γ( 12 −
κ
2 + ir)

Λ(σ+ it,σ− it, r)dr

}
.

In Section 3.10, we shall derive the Kuznetsov trace formulae from these equations.
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3.7 holomorphic modular forms

On the set of holomorphic functions f : H → C, we define the slash operators |kγ for

every matrix γ ∈ SL2(R) as follows

(f |kγ)(z) = j(γ, z)−kf(γz).

No confusion should arise between the slash operator for Maass forms as their weight is

always denoted with κ and the weight of holomorphic forms is denoted by k. The slash

operators once more satisfy the equality

f |kγτ = σk(γ, τ )(f |kγ)|kτ , ∀γ, τ ∈ SL2(R).

Definition 3.7.1. Let Γ be a Fuchsian group of the first kind and υ a multiplier system

of weight k with respect to Γ. A holomorphic function f : H → C is called modular of

weight k with respect to υ (and Γ) if it satisfies

f |kγ = υ(γ)f , ∀γ ∈ Γ.

Every such function has a Fourier expansion at a cusp a of the following type:

(f |kσa)(z) =
∑
m∈Z

ψf (a,m)e((m+ ηa)z). (3.41)

Definition 3.7.2. Let f : H → C be a holomorphic modular function (of weight k with

respect to υ and Γ). If for every cusp a of Γ the Fourier expansion at a (3.41) may be

restricted to those m with m+ ηa ≥ 0, then we call f a (holomorphic) modular form (of

weight k with respect to υ and Γ). The space of all modular forms of weight k with

respect to υ and Γ is denoted byMk(Γ, υ).

Similarly, if one may restrict the sum in (3.41) to m+ ηa > 0 for every cusp a of Γ, then

we call f (holomorphic) cusp form (of weight k with respect to υ and Γ). The space of all

cusp forms of weight k with respect to υ and Γ is denoted by Sk(Γ, υ).

Proposition 3.7.1. The spaces Mk(Γ, υ) and Sk(Γ, υ) are finite-dimensional C-vector spaces

with

dimC Sk(Γ, υ) ≤ dimCMk(Γ, υ)� (k+ 1)(volFΓ + 1).

Proof. See [Iwa97, Section 2.7].
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3.7 holomorphic modular forms

Interestingly, there is a nice characterisation of holomorphic modular forms in terms

of Maass forms of a special kind. We have the following lemma.

Lemma 3.7.2. Let f(z) be a holomorphic modular form of weight k with respect to υ and Γ. Then,

y
k
2 f(z) is a Maass form of weight κ = k with respect to υ and Γ with eigenvalue k

2 (1−
k
2 ). This

map further constitutes an isomorphism of vector spaces. In addition, y
k
2 f(z) is a cuspidal Maass

form if and only if f(z) is a holomorphic cusp form.

Proof. This is just a sharpening of Lemma 3.5.2. The vanishing of the negative Fourier

coefficients follows from Lemma 3.4.3, equations (3.42),(3.43), together with Λκf = 0.

Corollary 3.7.3. For k < 0, we haveMk(Γ, υ) = {0} andM0(Γ, υ) ⊆ C.

Proof. Let f ∈Mk(Γ, υ). Then, by the Lemmata 3.7.2, 3.5.2, and 3.5.1, we have

k‖y
k
2 f(z)‖22 = ‖Kky

k
2 f(z)‖22.

The first statement follows. For the second statement, we see that this equality implies

K0f(z) = 0. Thus, f(z) is also an antiholomorphic function and hence constant.

By comparing the Fourier coefficients of a modular form f(z) (3.41) to the ones of

y
k
2 f(z) (3.15) and using (A.4), we find that

ψf (a,m) = (4π(m+ ηa))
k
2 · ρ

y
k
2 f
(a,m), m+ ηa > 0,

ψf (a,m) = ρ
y
k
2 f
(a,m), m+ ηa < 0,

(3.42)

and for a singular

ψf (a, 0) = ρ
y
k
2 f
(a, 0), (it

y
k
2 f

= k
2 −

1
2 ). (3.43)

It should come as no surprise that we can turn Sk(Γ, υ), respectively Mk(Γ, υ) for

0 ≤ k < 1, into a Hilbert space, where the inner product is given by

〈f , g〉 =
∫
FΓ

f(z)g(z)yk
dxdy

y2
. (3.44)

We let Bhk (Γ, υ) denote an orthonormal basis of this space. Inside the space of modular

forms, we may once more find Poincaré series. For m + ηa > 0, they are defined as

follows:

Pυ,ka,m(z) = (4π(m+ ηa))
k−1y−

k
2Uυ,ka,m(z,

k
2 ). (3.45)
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3.7 holomorphic modular forms

This is well-defined for k > 2. For k ≤ 2, we need to make use of the analytic continu-

ation of Uυ,ka,m, which works fine, except in the case k = 1, where one would need to go

to the residual function instead. However, we shall only require this when k ≥ 2. From

Proposition (3.6.2), Corollary 3.6.5, and (3.42), we immediately recover the following

proposition.

Proposition 3.7.4. Let k ≥ 2, m+ ηa > 0 and h ∈ Sk(Γ, υ). Then, we have

〈Pυ,ka,m,h〉 = ψh(a,m) · Γ(k− 1). (3.46)

We shall also compute the Fourier expansion of the Poincaré series.

Proposition 3.7.5. Let k ≥ 2 and m+ ηa > 0. Then, we have

(Pυ,ka,m|kσb)(z)= δa,b(4π(m+ ηa))
k−1e((m+ ηa)z)+ 2π

∑
n+ηb>0

(
4π
√
(m+ ηa)(n+ ηb)

)k−1

×
∑
c∈Ca,b

Sυ,ka,b (m,n; c)

c
Jk−1

(
4π
√
(m+ ηa)(n+ ηb)

c

)
e((n+ ηb)z), (3.47)

where for k = 2 the sum over c ∈ Ca,b is to be interpret as the limitd

lim
σ→1+

∑
c∈Ca,b

Sυ,ka,b (m,n; c)

c2σ−1
Jk−1

(
4π
√
(m+ ηa)(n+ ηb)

c

)
.

Proof. We have (Pυ,ka,m|kσb)(z) = (4π(m+ ηa))k−1y
− k

2 (Uυ,ka,m|κσb)(z, k2 ). We shall make use

of the Fourier expansion (3.16). Suppose first that k > 2. In this case, we are in the

region of absolute convergence of the non-holomorphic Poincaré series and we may just

set s = k
2 . We shall evaluate Bk(c,m,n, y, k2 ) for k > 1.

Bk(c,m,n, y, k2 ) =

∫ ∞
−∞

e

(
− m

ic2(y− it)
− nt

)
(y− it)−kdt

= −ie(niy)
∫
(y)

exp

(
−2πm

c2t
+ 2πnt

)
t−kdt.

d Note that this limit exists due the Taylor expansion of the Bessel function around 0 and the fact that for

m+ ηa,n+ ηb > 0 the Kloosterman zeta function Zυa,b(m,n; s) has no pole at s = 1.
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3.7 holomorphic modular forms

For n ≤ 0, we may shift the contour all the way to the right and find that the integral is

arbitrarily small. Therefore, it must equal 0. For n > 0, we transform the contour into a

lock-hole contour

Bk(c,m,n, y, k2 ) = −ie(niy)
∫ (0+)

−∞
exp

(
−2πm

c2t
+ 2πnt

)
t−kdt

= −ie(niy)(2πn)k−1
∫ (0+)

−∞
exp

(
u− 16mn

c2
1

4u

)
u−(k−1)

du

u

= 2πe(niy)
( n
m

) k−1
2
ck−1Jk−1

(
4π
√
mn

c

)
,

where we made use of (A.6). Inserting this equality yields (3.47). For k = 2, we may

proceed similarly. In this case, we may take the limit s → k
2

+
= 1+ of each Fourier

coefficient. We find that Bk(c,m,n, y, s) is an analytic function for Re(s) > 1
2 . By using

the Taylor expansion, we find

Bk(c,m,n, y, s) = Bk(c,m,n, y, k2 ) + (s− 1)
d

ds

∣∣∣∣
s= k

2

Bk(c,m,n, y, s)

+
(s− 1)2

2

d2

ds2

∣∣∣∣
s=ξ

Bk(c,m,n, y, s),

for some ξ ∈ [ k2 , s]. We have

d2

ds2

∣∣∣∣
s=ξ

Bk(c,m,n, y, s)

=

∫ ∞
−∞

e

(
− m

c2(t+ iy)
− nt

)
(y− it)−

k
2
−ξ(y+ it)−

k
2
+ξ log(t2 + y2)2dt

= Om,n,y(1).

It is crucial that the error is independent of c. By inserting this expansion, we find that

the first term gives us what we claim. We need to show that the other terms limit to 0.

From (3.13), we conclude that

∑
c∈Ca,b

|Sυ,ka,b (m,n; c)|
c2s

= Oa,b

(
1

s− 1

)
,

for s ∈ R approaching 1+. Thus, the last term also limits to 0. For the second term, we

have

d

ds

∣∣∣∣
s= k

2

Bk(c,m,n, y, s) =

∫ ∞
−∞

e

(
− m

c2(t+ iy)
− nt

)
(y− it)−k log(t2 + y2)dt

=

∫ ∞
−∞

e (−nt) (y− it)−k log(t2 + y2)dt+Om,y

(
1

c2

)
,

37



3.8 antiholomorphic modular forms

from which it follows that the second term also limits to 0, since for m+ ηa,n+ ηb > 0,

the Kloosterman zeta function Zυ,ka,b (m,n; s) admits an analytic continuation to some

half-plane Re(s) > 1− δ, for some small δ > 0.

Theorem 3.7.6 (Petersson trace formula). Let υ be a multiplier system of weight k ≥ 2 for

the group Γ and Bhk (Γ, υ) be an orthonormal basis of Sk(Γ, υ). Then, we have the identity

Γ(k− 1)

(4π
√
(m+ ηa)(n+ ηb))k−1

∑
f∈Bhk (Γ,υ)

ψf (a,m)ψf (b,n)

= δa,bδm,n + 2π
∑
c∈Ca,b

Sυ,ka,b (m,n; c)

c
Jk−1

(
4π
√
(m+ ηa)(n+ ηb)

c

)
(3.48)

for m+ ηa,n+ ηb > 0, where for k = 2 the sum over c ∈ Ca,b is to be interpret as the limit

lim
σ→1+

∑
c∈Ca,b

Sυ,ka,b (m,n; c)

c2σ−1
Jk−1

(
4π
√
(m+ ηa)(n+ ηb)

c

)
.

Proof. We shall evaluate 〈Pυ,ka,m,Pυ,kb,n 〉 in two ways. On the one hand, we have by using

the Fourier expansion of the Poincaré series (3.47) together with (3.46) that

〈Pυ,ka,m,P
υ,k
b,n 〉 = Γ(k− 1)

(
4π
√
(m+ ηa)(n+ ηb)

)k−1
×

δa,bδm,n + 2π
∑
c∈Ca,b

Sυ,ka,b (m,n; c)

c
Jk−1

(
4π
√
(m+ ηa)(n+ ηb)

c

) .

On the other hand, we have

Pυ,ka,m(z) =
∑

f∈Bk(Γ,υ)

〈Pυ,ka,m, f〉f(z) = Γ(k− 1)
∑

f∈Bk(Γ,υ)

ψf (a,m)f(z)

and thus

〈Pυ,ka,m,P
υ,k
b,n 〉 = Γ(k− 1)2

∑
f∈Bk(Γ,υ)

ψf (a,m)ψf (b,n).

3.8 antiholomorphic modular forms

The situation for antiholomorphic modular forms is essentially the same as for holo-

morphic modular forms, except for the fact that everything is complex-conjugated.
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3.9 hecke algebra

Definition 3.8.1. Let f : H → C be an antiholomorphic function. Then, f is called an

antiholomorphic modular form with respect to Γ and υ of weight k if and only if f is a

modular form with respect to Γ and υ of weight k. The space of antiholomorphic forms

with respect to Γ and υ of weight k is denoted by Mk(Γ, υ) =Mk(Γ, υ). Similarly, f is

cuspidal if and only if f is and the space of antiholomorphic cusp forms with respect to

Γ and υ of weight k is denoted by Sk(Γ, υ) = Sk(Γ, υ).

What this means is, that the holomorphic counterpart definition of being a modular

function carries over to the antiholomorphic setting, if we define the slash operators for

antiholomorphic functions as follows:

(f |kγ)(z) = j(γ, z)−kf(γz).

The Fourier expansion of an antiholomorphic modular form f ∈Mk(Γ, υ) is given by

(f |kσa)(z) =
∑

m+ηa≤0
ψf (a,m)e((m+ ηa)z).

Complex conjugation shows

ψf (a,m) = ψf (a,−m− δnsa ).

The inner product on Sk(Γ, υ), respectivelyMk(Γ, υ) for k < 1, is given by

〈f , g〉 =
∫
FΓ

f(z)g(z)yk
dxdy

y2
.

We denote by Bak(Γ, υ) an orthonormal basis of this space. We also have a to Lemma

3.7.2 equivalent lemma.

Lemma 3.8.1. Let f(z) be an antiholomorphic modular form of weight k with respect to υ and

Γ. Then, y
k
2 f(z) is a Maass form of weight κ = −k with respect to υ and Γ with eigenvalue

k
2 (1−

k
2 ). This map further constitutes an isomorphism of vector spaces. In addition, y

k
2 f(z) is

a cuspidal Maass form if and only if f(z) is an antiholomorphic cusp form.

3.9 hecke algebra

The theory of Hecke operators finds its origin in a paper of Mordell [Mor17] who used

them to show multiplicative properties of the Fourier coefficients of the discriminant

modular form. However, the theory as we know it today was largely developed by
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3.9 hecke algebra

Hecke [Hec37a, Hec37b] and Petersson [Pet39a, Pet39b, Pet40], with large contributions

coming from Atkin–Lehner [AL70], who introduced the notion of newforms. We shall

present here a theory of Hecke operators for arbitrary real weight, which was developed

by Wohlfahrt [Woh57]. We shall see here that this theory has its difficulties, since it will

turn out that most operators will be identically zero. There is one important exception

to this, namely the half-integral weight modular forms. This case has been thoroughly

investigated by Shimura [Shi73].

In order to define Hecke operators, we need to consider the larger group Sκ, whose

elements consists of all pairs (γ,u) ∈ SL2(R)× S1 and the group law is given by

(γ,u) ◦ (τ , v) = (γτ ,uvσκ(γ, τ )), ∀(γ,u), (τ , v) ∈ Sκ.

By making use of the relation (3.2), we easily see that this group law indeed turns Sκ

into a group with identity element (I, 1). We can now extend the definition of the slash

operators |κ and |k for k ≡ κmod(2) to elements of Sκ:

f |κ(γ,u) = u · f |κγ and f |k(γ,u) = u · f |kγ.

We see that γ and (γ, 1) induce the same operation and therefore we may identify them.

However, note that this does not give rise to a group embedding. Given a Fuchsian

group of the first kind Γ and a multiplier system υ for Γ of weight κ. Then, we have a

group embedding
? : Γ→ Sκ,

γ 7→ γ? := (γ, υ(γ)).

We immediately see that a function being modular with respect to υ and Γ is equivalent

to f |κγ? = f , respectively f |kγ? = f , for all γ ∈ Γ.

Definition 3.9.1. Let Γ be a Fuchsian group of the first kind and υ a multiplier system

of weight κ. Then, the commensurator of Γ, respectively Γ? is the set of all γ ∈ SL2(R),

respectively ξ ∈ Sκ, such that Γ ∩ γΓγ−1 has finite index in Γ and γΓγ−1, respectively

ξΓ?ξ−1 has finite index in Γ? and ξΓ?ξ−1. The commensurator of Γ, respectively Γ?, is

denoted by ΞΓ, respectively ΞΓ? .

Elements ξ ∈ ΞΓ? of the commensurator are of importance, since for them the double-

coset quotient Γ? \ Γ?ξΓ? is of finite order and we may define operators |κΓ?ξΓ? : Hκ(Γ, υ)→

Hκ(Γ, υ) and |kΓ?ξΓ? :Mk(Γ, υ)→Mk(Γ, υ) as follows:

f |κΓ?ξΓ? =
∑

η∈Γ? \ Γ?ξΓ?
f |κη, f |kΓ?ξΓ? =

∑
η∈Γ? \ Γ?ξΓ?

f |kη.
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3.9 hecke algebra

We shall note here that |κΓ?ξΓ? commutes with ∆κ and |kΓ?ξΓ? preserves the space of

cusp forms Sk(Γ, υ). The operators are in essence our Hecke operators. However, we

shall normalise them when we apply them to congruence subgroups.

Proposition 3.9.1. Let τ ∈ ΞΓ and v ∈ S1. Then, ξ = (τ , v) ∈ ΞΓ? if and only if the kernel of

the character t : Γ ∩ τ−1Γτ → S1 given by

t(γ) =
υτ (γ)

υ(γ)
, ∀γ ∈ Γ ∩ τ−1Γτ ,

has finite index in Γ ∩ τ−1Γτ , where we recall the conjugated multiplier system υτ from Pro-

position 3.2.5. In which case, the operators |κΓ?ξΓ? and |kΓ?ξΓ? are the zero operators, unless

t(γ) = 1 for all γ ∈ Γ ∪ τ−1Γτ .

Proof. See [Shi73, Prop. 1.0].

From this proposition, we see that the multiplier system must be of special shape to

allow for non-trivial operators |κΓ?ξΓ?, |kΓ?ξΓ?.

Proposition 3.9.2. Let ξ ∈ ΞΓ? and f , g ∈ Hκ(Γ, υ), or f , g ∈ Sk(Γ, υ). Then, we have

〈f |κΓ?ξΓ?, g〉 = 〈f , g|κΓ?ξ−1Γ?〉, respectively 〈f |kΓ?ξΓ?, g〉 = 〈f , g|kΓ?ξ−1Γ?〉.

Proof. See [Shi71, Prop. 3.39].

It is further possible to consider the C-module generated by double cosets Γ?ξΓ? with

ξ ∈ ΞΓ? , which is denoted by R(Γ?,ΞΓ?) and define a multiplication law on it, which is

consistent with the |κ operator. We refer the reader to [Shi71, Chapter 3].

From here on, we only consider a special case of the general theory. We shall consider

the group Γ = Γ0(N), for some N ∈N, with trivial multiplier system of weight 0. Note

that since κ is integral, we have Sκ
∼= SL2(R)× S1 as groups and we may forget about

the second coordinate. It is easily verified that{
γ ∈ SL2(R)

∣∣∣∣∣γ =
1√

det(τ )
τ for some τ ∈ Mat2×2(Z) with det(τ ) > 0

}
⊆ ΞΓ0(N).

We define the Hecke operators as

|0Tm = m−
1
2 · |0Γ0(N)

(
1/
√
m 0

0
√
m

)
Γ0(N)

|kTm = m
k
2
−1 · |kΓ0(N)

(
1/
√
m 0

0
√
m

)
Γ0(N).
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3.9 hecke algebra

A set of representatives of Γ0(N) \ Γ0(N)
(

1/
√
m 0

0
√
m

)
Γ0(N) may be given by 1√

m

a b

0 d

∣∣∣a, d ∈N, ad = m, (a,N) = 1, b = 0, . . . , d− 1

 . (3.49)

These operators commute with each other (see for example [Shi71, Prop. 3.8]). Moreover,

they are multiplicative (see for example [Shi71, Chapter 3.3]), i.e. we have

|0Tmn = |0Tm|0Tn = |0Tn|0Tm, (m,n) = 1,

and

|kTmn = |kTm|kTn = |kTn|kTm, (m,n) = 1.

Since we have Γ0(N)
(

1/
√
m 0

0
√
m

)
Γ0(N) = Γ0(N)

(√
m 0
0 1/

√
m

)
Γ0(N) for (m,N) = 1, we

have by means of Proposition 3.9.2, that the operators |0Tm and |kTm for (m,N) = 1 are

self-adjoint. Hence, we may simultaneously diagonalise the spaces H0(Γ0(N), 1) and

Sk(Γ0(N), 1). This is clear for the latter space as they are finite-dimensional. For the

former, we may diagonalise each eigenspace H0(Γ0(N), 1,λ). Recall, that this space is

finite-dimensional and that the Hecke operators commute with the Laplace–Beltrami

operator ∆0.

Definition 3.9.2. A cusp form f ∈ Sk(Γ0(N), 1) is called a Hecke eigenform if it is an

eigenfunction of all the Hecke operators |kTm for (m,N) = 1. Analogously, a Maass

form f ∈ H0(Γ0(N), 1) is called a Hecke–Maass eigenform if it is an eigenfunction of all

the Hecke operators |0Tm for (m,N) = 1.

The Hecke(–Maass) eigenforms fall into different categories, so-called oldforms and

newforms. We shall summarise the results of [AL70], but first we need to introduce

another operator, which increases the level.

Lemma 3.9.3. Let An denote the matrix
(√

n 0
0 1/

√
n

)
. Then, |0An defines a map from

H0(Γ0(N), 1)→H0(Γ0(nN), 1) and |kAn defines a map from Sk(Γ0(N), 1)→Sk(Γ0(nN), 1).

Moreover |0An, respectively |kAn, commutes with all Hecke operators |0Tm, respectively |kTm,

for (m,n) = 1.

Proof. The first part follows from AnΓ0(nN)A−1n ⊆ Γ0(N) and the second part follows

from the fact that conjugating the coset representatives (3.49) with An just permutes

them (b 7→ bnmod(d)).
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3.9 hecke algebra

Theorem 3.9.4. The spaces H0(Γ0(N), 1) and Sk(Γ0(N), 1) split into an oldspace, which is

generated byH0(Γ0(M), 1)|0An, respectively Sk(Γ0(M), 1)|0An, where M runs over all proper

divisors of N and n over all divisors of N
M , and its orthogonal complement the newspace. Each

Hecke(–Maass) eigenform either falls into the oldspace, in which case we call it an oldform, or

into the newspace, in which case we call it a newform. The whole of the oldspace is generated by

oldforms and every oldform is in the span of forms f |0An, respectively f |kAn, where f is a fixed

newform of level M for some proper divisor of N and n runs over all the divisors of N
M . Each

newform f is an eigenfunction of all the Hecke operators (including the ones dividing the level).

Moreover, if we denote by λf (m) the eigenvalue of |0Tm, respectively |kTm, then we have∑
n≥1

ρf (∞,±n)n
1
2−s = ρf (∞,±1)

∑
n≥1

λf (n)n
−s

= ρf (∞,±1)
∏
p|N

(
1− λf (p)p−s

)−1∏
p6 |N

(
1− λf (p)p−s + p−2s

)−1
,

respectively∑
n≥1

ψf (∞,n)n−s = ψf (∞, 1)
∑
n≥1

λf (n)n
−s

= ψf (∞, 1)
∏
p|N

(
1− λf (p)p−s

)−1∏
p6 |N

(
1− λf (n)p−s + pk−1−2s

)−1
,

formally. In particular, we have ψf (∞, 1) 6= 0.

Proof. See [AL70].

The size of the eigenvalues of the Hecke operators, or more generally the Fourier

coefficients of cusp forms, have remained a mystery for a long time. Many different

approaches have been fruitful for various cases. We refer to a survey article of Selberg

[Sel65]. More recently, tools of l-adic cohomology and functoriality of symmetric powers

of representations have entered the picture and they remain the most successful ap-

proaches when it comes to arithmetic groups. We shall record these bounds here. If f is

a Maass newform, then we have by the works of Kim–Sarnak [Kim03] λf (n) �ε n
θ+ε,

where θ = 7
64 . In the case where f is a holomorphic newform, we have λf (n)�ε n

k−1
2

+ε

by the works of Deligne [Del71, Del74] and Deligne–Serre [DS74].

In due course, we shall need an orthonormal basis of Hecke(–Maass) eigenforms of the

space H0(Γ0(N), 1), respectively Sk(Γ0(N), 1). The basis we present here was computed
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3.9 hecke algebra

by Blomer–Milićević [BM15b]e. For a newform h of level M |N , we define the arithmetic

functions

Rh(c) =
∑
b|c

µ(b)λh(b)
2

b

∑
d|b

χ0(d)

d

−2, A(c) =
∑
b|c

µ(b)χ0(b)2

b2
, B(c) =

∑
b|c

µ(b)2χ0(b)

b
,

where χ0 is the trivial character modulo M , and the multiplicative function µh(c) is

defined by the equation ∑
c≥1

λh(c)

cs

−1 =∑
c≥1

µh(c)

cs
.

For l|d define

ξ′d(l) =
µ(d/l)λh(d/l)

rh(d)
1
2 (d/l)

1
2B(d/l)

, ξ′′d (l) =
µh(d/l)

rh(d)
1
2 (d/l)

1
2A(d)

1
2

.

Let us write d = d1d2 with d1 square-free, d2 square-full, and (d1, d2) = 1. Then, for l|d

define

ξd(l) = ξ′d1((d1, l))ξ
′′
d2((d2, l))�ε d

ε. (3.50)

Then, an orthonormal basis of H0(Γ0(N), 1) is given by

⋃
M |N

⋃
h new

of level M

hd(z) =∑
l|d

ξd(l) · h|0Al

∣∣∣∣∣d|NM
 (3.51)

and an orthonormal basis of Sk(Γ0(N), 1) is given by

⋃
M |N

⋃
f new

of level M

fd(z) =∑
l|d

ξd(l) · f |kAl

∣∣∣∣∣d|NM
 . (3.52)

We shall record here a bound for the Fourier coefficients of these orthonormal bases.

Let h be an L2-normalised Maass newform of level M |N and d|NM . Then, we have

√
nρhd(∞,n) =

∑
l|(d,n)

√
lξd(l)λh

(n
l

)
ρh(∞, 1)

�ε (nN)εnθ|ρh(∞, 1)|
∑
l|(d,n)

l
1
2
−θ

�ε (nN)εnθ
(
N

M

) 1
2

|ρh(∞, 1)|,

(3.53)

where we have made use of (3.50) and λh(n) �ε n
θ+ε. Since h is new of level N , but

normalised with respect to the inner product of level N (3.30), we further have

|ρh(∞, 1)| �ε (N(1+ |th|))ε
(
cosh(πth)

N

) 1
2

, (3.54)

e Corrections can be found at http://www.uni-math.gwdg.de/blomer/corrections.pdf.
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3.10 the kuznetsov trace formula

which is due to Hoffstein–Lockhart [HL94]. If f is an L2-normalised holomorphic new-

form of level M |N , weight k, and d|NM , then we have

ψfd(∞,n) =
∑
l|(d,n)

ξd(l)l
k
2λf

(n
l

)
ψf (∞, 1)

�ε (nN)εn
k−1
2 |ψh(∞, 1)|

∑
l|(d,n)

l
1
2

�ε (nN)εn
k−1
2

(
N

M

) 1
2

|ψh(∞, 1)|,

(3.55)

where we have made use of the Deligne bound as well as (3.50). We further have the

bound

|ψh(∞, 1)| �ε
(4π)

k−1
2

N
1
2 Γ(k)

1
2

(kN )ε, (3.56)

when h is new of level r, but normalised with respect to (3.44); see for example [Mic07,

pp. 41,42].

3.10 the kuznetsov trace formula

As previously mentioned, we shall derive the Kuznetsov trace formula from the pre-

trace formula and complete it with the Petersson trace formula. We shall restrict ourselves

to κ ∈ [0, 2[. The case m+ ηa,n+ ηb > 0 with a = b has already been worked out by

Proskurin [Pro05]. One may easily adopt Proskurin’s method to account for the general

case by using Proposition 3.6.8 and Theorem 3.7.6 instead of the pre-trace formula given

there. One arrives at the following theorem.

Theorem 3.10.1. Let Γ be a Fuchsian group of the first kind, υ a multiplier system for Γ of

weight κ ∈ [0, 2[, and a, b two cusps of Γ. Let φ : [0,∞[→ C be a function with continuous

derivatives up to third order satisfying

φ(0) = φ′(0) = 0, φ(x)� (x+ 1)−1−δ, φ′(x),φ′′(x),φ′′′(x)� (x+ 1)−2−δ,

for some δ > 0. Then, for m+ ηa,n+ ηb > 0, we havef

∑
c∈Ca,b

Sυ,κ(m,n; c)

c
φ

(
4π
√
(m+ ηa)(n+ ηb)

c

)
= Hκυ(m,n;φ) +Mκ

υ(m,n;φ) + Eκυ (m,n;φ),

f We adopt the convention that if a Fourier coefficient is 0, then that summand is zero. This is only needed

when κ = 0.
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3.10 the kuznetsov trace formula

where

Hκυ(m,n;φ)=
1

π

∑
k≡κmod(2)

k>0

∑
h∈Bhk (Γ,υ)

(−1)
k−κ
2 Γ(k)

(4π
√
(m+ ηa)(n+ ηb))k−1

ψh(a,m)ψh(b,n)φ̃(k− 1),

Mκ
υ(m,n;φ)= 4

∑
h∈Bκ(Γ,υ)
λh>

κ
2
(1−κ

2
)

√
(m+ ηa)(n+ ηb)

cosh(πth)
ρh(a,m)ρh(b,n)φ̂(th,κ),

Eκυ (m,n;φ)=
∑
c sing.

∫ ∞
−∞

(
n+ ηb
m+ ηa

)ir Zυ,κc,a (0,m; 12 + ir)

Γ( 12 +
κ
2 − ir)

Zυ,κc,b (0,n; 12 + ir)

Γ( 12 +
κ
2 + ir)

φ̂(r,κ)dr

cosh(πr)
.

Here, the transforms are given by

φ̃(t) =

∫ ∞
0

Jt(x)φ(x)
dx

x
,

φ̂(t,κ) = iπ2

∫ ∞
0

[
cos
(
π(κ2 + it)

)
J2it(x)− cos

(
π(κ2 − it)

)
J−2it(x)

]
φ(x)

dx

x

sinh(πt) (cosh(2πt) + cos(πκ)) Γ( 12 −
κ
2 + it)Γ( 12 −

κ
2 − it)

.

(3.57)

The observant eye will notice that we have excluded the very bottom of the spectrum

and included it in the holomorphic contribution. We shall show that this was a valid

manœuvre.

Proof. We have λh = κ
2 (1−

κ
2 )⇔ th = ±i(κ2 −

1
2 ) and

φ̂
(
±i
(
κ
2 −

1
2

)
,κ
)
= iπ2

−
∫ ∞
0

cos
(
π
(
κ− 1

2

))
Jκ−1(x)φ(x)

dx

x

i sin
(
π
(
κ
2 −

1
2

))
(−2π) sin (π (κ− 1)) Γ(1− κ)Γ(1)

=
π

2

sin (κπ)

cos
(
κ
2π
)
sin (π(1− κ)) Γ(1− κ)

φ̃(κ− 1)

= sin
(
κ
2π
)

Γ(κ)φ̃(κ− 1).

By invoking Lemma 3.5.2, we further have that y−
κ
2 h is holomorphic and the collection

of these functions form an orthonormal basis of Sκ(Γ, υ), respectivelyMκ(Γ, υ) if κ < 1.

Hence, by (3.42) we have

4
∑

h∈Bκ(Γ,υ)
λh=

κ
2
(1−κ

2
)

√
(m+ ηa)(n+ ηb)

cosh(πth)
ρh(a,m)ρh(b,n)φ̂(th)

=
1

π

∑
h∈Bhκ(Γ,υ)

Γ(κ)(
4π
√
(m+ ηa)(n+ ηb)

)k−1ψh(a,m)ψh(b,n)φ̃(1− κ).
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The above theorem is sufficient to spectrally expand sums of Kloosterman sums when

m+ ηa and n+ ηb have the same sign. However one might be interested in expressing the

negative Fourier coefficients geometrically. Unfortunately, Proskurin did not consider

the case κ ∈]− 2, 0[, so the case m+ ηa,n+ ηb < 0 does not simply follow from complex

conjugation, but requires some work.

Theorem 3.10.2. Let Γ be a Fuchsian group of the first kind, υ a multiplier system for Γ of

weight κ ∈ [0, 2[, and a, b two cusps of Γ. Let φ : [0,∞[→ C be a function with continuous

derivatives up to third order satisfying

φ(0) = φ′(0) = 0, φ(x)� (x+ 1)−1−δ, φ′(x),φ′′(x),φ′′′(x)� (x+ 1)−2−δ,

for some δ > 0. Then, for m+ ηa,n+ ηb < 0, we have∑
c∈Ca,b

Sυ,κ(m,n; c)

c
φ

(
4π
√
(m+ ηa)(n+ ηb)

c

)
= Aκυ(m,n;φ) +Mκ

υ(m,n;φ) + Eκυ (m,n;φ),

where

Aκυ(m,n;φ)=
1

π

∑
k≡−κmod(2)

k>0

∑
h∈Bak(Γ,υ)

(−1)
k+κ
2 Γ(k)

(4π
√
(m+ ηa)(n+ ηb))k−1

ψh(a,m)ψh(b,n)φ̃(k− 1),

Mκ
υ(m,n;φ)= 4

∑
h∈Bκ(Γ,υ)
λh>

κ
2
(1−κ

2
)

√
(m+ ηa)(n+ ηb)

cosh(πth)
ρh(a,m)ρh(b,n)φ̂(th,−κ),

Eκυ (m,n;φ)=
∑
c sing.

∫ ∞
−∞

(
n+ ηb
m+ ηa

)ir Zυ,κc,a (0,m; 12 + ir)

Γ( 12 −
κ
2 − ir)

Zυ,κc,b (0,n; 12 + ir)

Γ( 12 −
κ
2 + ir)

φ̂(r,−κ)dr
cosh(πr)

,

and the transforms are given as in (3.57).

Proof. The case κ = 0 follows directly from Theorem 3.10.1 and complex conjugation.

Now, we consider the case κ ∈]0, 2[. Our starting point is Theorem 3.10.1 with the multi-

plier system υ of weight 2− κ with entries −m− δnsa ,−n− δnsb in the Kloosterman sum.

The transform is given by

φ̂(t, 2− κ) =iπ2

∫ ∞
0

[
cos
(
π( 2−κ2 + it)

)
J2it(x)− cos

(
π( 2−κ2 − it)

)
J−2it(x)

]
φ(x)

dx

x

sinh(πt) (cosh(2πt) + cos(π(2− κ))) Γ( 12 −
2−κ
2 + it)Γ( 12 −

2−κ
2 − it)

=− iπ2

∫ ∞
0

[
cos
(
π(−κ2 + it)

)
J2it(x)− cos

(
π(−κ2 − it)

)
J−2it(x)

]
φ(x)

dx

x

sinh(πt) (cosh(2πt) + cos(−πκ)) Γ( 12 +
κ
2 + it)Γ( 12 +

κ
2 − it)

×
(
κ

2
− 1

2
+ it

)(
κ

2
− 1

2
− it

)
=−

(
t2 +

(
κ
2 −

1
2

)2)
φ̂(t,−κ).
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3.10 the kuznetsov trace formula

Now, since λh > 2−κ
2 (1− 2−κ

2 ), we may apply the weight lowering operator Λ2−κ to our

basis. By Lemmata 3.4.2, 3.5.1, this preserves the eigenvalue and, when restricted to a

fixed eigenvalue > 2−κ
2 (1− 2−κ

2 ), is an orthogonality preserving bijection. Furthermore,

we have for h ∈ B2−κ(Γ, υ) with λh > 2−κ
2 (1− 2−κ

2 ):

‖Λ2−κh‖2 =
(
λh − 2−κ

2 (1− 2−κ
2 )
)
‖h‖2

=
(
t2h +

(
κ
2 −

1
2

)2) ‖h‖2
and by Lemma 3.4.3 also

ρΛ2−κh(a,−m− δ
ns
a ) = −

(
t2h +

(
2−κ
2 −

1
2

)2)
ρh(a,−m− δnsa )

= −
(
t2h +

(
κ
2 −

1
2

)2)
ρh(a,−m− δnsa ).

Hence, we find by normalising that

M2−κ
υ (−m− δnsa ,−n− δnsb ,φ)

= −4
∑

h∈B−κ(Γ,υ)
λh>

κ
2
(1−κ

2
)

√
(m+ ηυa )(n+ ηυb )

cosh(πth)
ρh(a,−m− δnsa )ρh(b,−n− δnsb )φ̂(th,−κ).

We also find that E2−κυ (−m− δnsa ,−n− δnsb ;φ) is equal to

−
∑
c sing.

∫ ∞
−∞

(
n+ ηυb
m+ ηυa

)ir Zυ,−κc,a (0,−m− δnsa ; 12 + ir)

Γ( 12 −
κ
2 − ir)

Zυ,−κc,b (0,−n− δnsb ; 12 + ir)

Γ( 12 −
κ
2 + ir)

φ̂(r,−κ)dr
cosh(πr)

.

Hence, by complex conjugating, we conclude the proof of the theorem.

The final case, where m + ηa > 0 and n + ηb < 0, is slightly easier to prove from

scratch. Nevertheless, there are quite a few convergence issues. The proof is essentially

a combination of the proofs of [DI83], [Pro05], [Pro79], and [AA18].

Theorem 3.10.3. Let Γ be a Fuchsian group of the first kind, υ a multiplier system for Γ of

weight κ ∈]− 2, 2[, and a, b two cusps of Γ. Let φ : [0,∞[→ C be a function with continuous

derivatives up to third order satisfying

φ(0) = φ′(0) = 0, φ(x),φ′(x),φ′′(x)� (x+ 1)−1−δ,

for some δ > 0. Then, for m+ ηa > 0, n+ ηb < 0, we have

∑
c∈Ca,b

Sυ,κ(m,n; c)

c
φ

(
4π
√
(m+ ηa)|n+ ηb|

c

)
=Mκ

υ(m,n;φ) + Eκυ (m,n;φ),
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3.10 the kuznetsov trace formula

where

Mκ
υ(m,n;φ) = 2π

∑
h∈Bκ(Γ,υ)

√
(m+ ηb)|n+ ηb|
cosh(πth)

ρh(a,m)ρh(b,n)φ̌(th),

Eκυ (m,n;φ) =
π

2

∑
c sing.

∫ ∞
−∞

∣∣∣∣m+ ηa
n+ ηb

∣∣∣∣−ir Zυ,κc,a (0,m; 12 + ir)

Γ( 12 +
κ
2 − ir)

Zυ,κc,b (0,n; 12 + ir)

Γ( 12 −
κ
2 + ir)

φ̌(r)dr

cosh(πr)
,

and the transform is given by

φ̌(r) =
4

π
cosh(πr)

∫ ∞
0

K2ir(x)φ(x)
dx

x
.

Remark 3.10.4. The only place where the third derivative of φ is used is at zero for the

Kontorovich–Lebedev inversion of φ(x)/x, which may not be necessary altogether.

Proof. We will make use of Proposition 3.6.10 and the Kontorovich–Lebedev inversion

A.4.3. Let f(x) = x−1φ(x). Then, f satisfies the conditions for the Kontorovich–Lebedev

inversion. However, before we proceed, we shall record a couple of bounds:

K2it(x)� e−π|t| (1+ | log(x)|) , (3.58)∫ ∞
0

K2it(x)φ(x)
dx

x2
�φ e

−π|t||t|−2(1+ |t|)−δ′ , (3.59)∫
L
Kit(ωq)

(
q+

1

q

)2σ−2
q±κ−1dq �Q (1+ | log(ω)|)(1+ |t|)−

3
2 , (3.60)

where κ, t ∈ R with |κ| < 2, x,σ,ω,Q ∈ R+ with 1 ≤ σ < 1+ 1
4 , ω ≤ Q, and some δ′ > 0.

The first estimate (3.58) is rather standard. For the range |t| � 1+ x, we make use of the

integral representation (A.16):

K2it(x) =
Γ( 12 + 2it)(2x)2it

√
π

∫ ∞
0

cos(y)

(y2 + x2)
1
2
+2it

dy

� e−π|t|

∣∣∣∣∣∣
∫ x+1

0

1

(y2 + x2)
1
2

dy+
sin(y)

(y2 + x2)
1
2

∣∣∣∣∣
∞

y=x+1

+ ( 12 + 2it)

∫ ∞
x+1

1

y2
dy

∣∣∣∣∣∣
� e−π|t|

(
1+ | log(x)|+ |t|

1+ x

)
.

The range |t| ≥ x ≥ 1 follows from [BST13, Prop. 2] and the remaining range follows

from the Taylor expansion around x = 0, see [BST13, Section 3.1]. In order to prove the

second estimate (3.59), we argue similarly to [DI83, pp. 265,266]. We shall require the

integral representation (A.17):

K2it(x) =
1

2πi

∫
(1)

2s−1x−sΓ
(
s
2 + it

)
Γ
(
s
2 − it

)
ds.
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3.10 the kuznetsov trace formula

We shift the contour to Re(s) = −1− η, where η = min{12 ,
δ
2}. Along the way, we pick

up two simple poles at s = ±2it. We therefore find

K2it(x) = 22it−1x−2itΓ(2it) + 2−2it−1x2itΓ(−2it)

+
1

2πi

∫
(−1−η)

2s−1x−sΓ
(
s
2 + it

)
Γ
(
s
2 − it

)
ds.

By inserting this, we arrive at∫ ∞
0

K2it(x)φ(x)
dx

x2
= 22it−1Γ(2it)

∫ ∞
0

φ(x)x−2it−2dx

+ 2−2it−1Γ(−2it)
∫ ∞
0

φ(x)x2it−2dx

+

∫ ∞
0

∫
(−1−η)

2s−1x−s−2Γ
(
s
2 + it

)
Γ
(
s
2 − it

)
dsφ(x)dx. (3.61)

The latter integral converges absolutely and hence we may exchange the order of integ-

ration. We recall φ has a zero of order at least two at x = 0. Hence, integrating by parts

shows ∫ ∞
0

φ(x)x−s−2dx =
1

s+ 1

∫ ∞
0

φ′(x)x−s−1dx =
1

s(s+ 1)

∫ ∞
0

φ′′(x)x−sdx,

where the first equality holds for −1− δ < Re(s) < 1, s 6= −1, and the second equality

for −δ < Re(s) < 1, s 6= −1, 0. By using this together with |Γ(±2it)| � (t sinh(2πt))−
1
2 ,

we find that the first two summands in (3.61) contribute at most O(e−π|t||t|−2(1+ |t|)−
1
2 ),

which is satisfactory. The third summand of (3.61) is equal to∫
(−1−η)

2s−1Γ
(
s+2
2 + it

)
Γ
(
s+2
2 − it

)
(s+ 1)

(
s
2 + it

) (
s
2 − it

) ∫ ∞
0

φ′(x)x−s−1dxds

�φ

∫ ∞
−∞

(cosh(2πt) + cosh(πu))−
1
2

(1+ |u|)(1+ |2t− u|)1+
η
2 (1+ |2t+ u|)1+

η
2

du

�φ e
−π|t|(1+ |t|)−2−

η
2
+o(1),

which completes the proof. The third estimate (3.60) is [Pro05, Eqs. (40),(42)].As the latter

lacks a proof, we give one here following the argument of the proof of [Pro79, Eq. (54)].

We first replace the K-Bessel function with the I-Bessel function by using (A.9)

Kit(ωq) =
πi

2 sinh(πt)
[Iit(ωq)− I−it(ωq)]

and further inserting the Taylor expansion (A.14)

I±it(ωq) =
∞∑
m=0

(ωq
2

)±it+2m

m!Γ(1+m± it)
.
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The whole expression converges absolutely and we may exchange sum and integral. We

arrive at∫
L
Kit(ωq)

(
q+

1

q

)2σ−2
qκ−1dq

=
π

2 sinh(πt)

∞∑
m=0

1

m!

[ (
ω
2

)2m−it
Γ(1+m− it)

∫ π
2

−π
2

e(t+i(2m+κ))θ (2 cos(θ))2σ−2 dθ

−
(
ω
2

)2m+it

Γ(1+m+ it)

∫ π
2

−π
2

e(−t+i(2m+κ))θ (2 cos(θ))2σ−2 dθ

]
.

Furthermore, we have for |t| ≥ 1

∫ π
2

−π
2

e(±t+i(2m+k))θ (2 cos(θ))2σ−2 dθ =
e(±t+i(2m+k))θ

±t+ i(2m+ k)
(2 cos(θ))2σ−2

∣∣∣∣∣
π
2

θ=−π
2

+ 2(2σ− 2)

∫ π
2

−π
2

e(±t+i(2m+k))θ

±t+ i(2m+ k)
(2 cos(θ))2σ−3 sin(θ)dθ

� e
π
2
|t|

|t|+ 1
+ 2(2σ− 2)

∫ π
2

0

e
π
2
|t|

|t|+ 1
(2 cos(θ))2σ−3 sin(θ)dθ �

e
π
2
|t|

|t|+ 1

by integration by parts. By further invoking Sterling’s approximation for the Gamma

function, the claimed bound for |t| ≥ 1 follows. When |t| ≤ 1, one needs to group the

plus and the minus term as follows

(
ω
2

)2m−it − (ω2 )2m+it

Γ(1+m− it)

∫ π
2

−π
2

e(t+i(2m+κ))θ (2 cos(θ))2σ−2 dθ

+
(ω
2

)2m+it
(

1

Γ(1+m− it)
− 1

Γ(1+m+ it)

)∫ π
2

−π
2

e(t+i(2m+κ))θ (2 cos(θ))2σ−2 dθ(
ω
2

)2m+it

Γ(1+m+ it)

∫ π
2

−π
2

(
e(t+i(2m+κ))θ − e(−t+i(2m+κ))θ

)
(2 cos(θ))2σ−2 dθ

and make use of the estimates (ω
2

)it
−
(ω
2

)−it
� t

∣∣∣log (ω
2

)∣∣∣ ,
1

Γ(1+m− it)
− 1

Γ(1+m+ it)
� t,

etθ − e−tθ � tθ,

to arrive at the same conclusion.

We now proceed by multiplying the equality in Proposition 3.6.10 by

4

π2
t sinh(2πt)

∫ ∞
0

K2it(x)φ(x)
dx

x2
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and integrate t from −∞ to∞. The left-hand side is absolutely convergent for σ > 1 by

(3.58), (3.59), and (3.13). Thus we may exchange summation and integral. By applying

the Kontorovitch–Lebedev inversion A.4.3, we find that the left-hand side is equal to

1

4π
√
(m+ ηa)|n+ ηb|

∑
c∈Ca,b

Sυ,κa,b (m,n; c)

c2σ−1
φ

(
4π
√
(m+ ηa)|n+ ηb|

c

)
. (3.62)

Since φ(x) = O(x2) as x→ 0, we find that this sum converges absolutely and uniformly

for σ ≥ 1. Thus, the limit σ → 1+ exists and is equal to its value at σ = 1.

We shall argue as in [Pro05] that the right-hand side converges absolutely uniformly

in 1 ≤ σ ≤ 1.01 as well. By applying the inequality between the arithmetic and geometric

mean, we find that the right-hand side is bounded by

(2π)1−2σ((m+ ηa)|n+ ηb|)1−σ

2Γ(2σ− 1)
·
∫ ∞
−∞

4

π2
t sinh(2πt)

∣∣∣∣∫ ∞
0

K2it(x)φ(x)
dx

x2

∣∣∣∣
×

( ∑
h∈Bκ(Γ,υ)

(|ρh(a,m)|2 + |ρh(b,n)|2)Λ(σ+ it,σ− it, th)

+
1

4

∑
c sing.

∫ ∞
−∞

|Zυ,κc,a (0,m; 12 + ir)|2

(m+ ηa)|Γ( 12 +
κ
2 + ir)|2

Λ(σ+ it,σ− it, r)dr

+
1

4

∑
c sing.

∫ ∞
−∞

|Zυ,κc,b (0,n; 12 + ir)|2

|n+ ηb||Γ( 12 −
κ
2 + ir)|2

Λ(σ+ it,σ− it, r)dr

)
dt. (3.63)

By using Propositions 3.6.8 and 3.6.9, we see that the right-hand side is finite for 1 <

σ ≤ 1.01 if∫ ∞
−∞

t sinh(2πt)

∣∣∣∣∫ ∞
0

K2it(x)φ(x)
dx

x2

∣∣∣∣
∣∣∣∣∣
∫
L
K2it(ωq)

(
q+

1

q

)2σ−2
q±κ−1dq

∣∣∣∣∣ |Γ(ε+ it)|2dt

is�ε,Q ω
o(1) for 0 < ω ≤ Q and 0 < ε < 1

2 and∫ ∞
−∞

t sinh(2πt)

∣∣∣∣∫ ∞
0

K2it(x)φ(x)
dx

x2

∣∣∣∣ |Γ(ε+ it)|2dt <∞.

Both are true by virtue of (3.59), (3.60), and Stirling approximation.

In the next step, we show that this convergence carries on to 1 ≤ σ ≤ 1.01. We separate

the Maass forms for which th /∈ R. There are only finitely many of them and for each

of them the limit σ → 1+ exists. The only problem arises when κ = 0 and th = ±1
2 i, in

which case h is constant and thus h has Fourier coefficient ρh(a,m) = 0 for non-zero m.

For th, r ∈ R, we have by Stirling approximation that

Λ(σ1 + it,σ1 − it; r)� Λ(σ2 + it,σ2 − it; r), ∀1 ≤ σ1 ≤ σ2 ≤ 1.01,∀t, r ∈ R.
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Hence, we have the proclaimed convergence. We further require another integral which

is recorded in [Pro79, Eq. (39)]

4

π2

∫ ∞
−∞

Λ(1+ it, 1− it, r)t sinh(2πt)
∫ ∞
0

K2it(x)φ(x)
dx

x2
dt = 4

∫ ∞
0

K2ir(x)φ(x)
dx

x

=
π

cosh(πr)
φ̌(r).

By pulling the integral over t in the inside, we find that the limit as σ → 1+ of the

right-hand side is equal to

1

2

∑
h∈Bκ(Γ,υ)

ρh(a,m)ρh(b,n)

cosh(πth)
φ̌(th) +

1

8
√
(m+ ηa)|n+ ηb|

×
∑
c sing.

∫ ∞
−∞

∣∣∣∣m+ ηa
n+ ηb

∣∣∣∣−ir Zυ,κc,a (0,m; 12 + ir)

Γ( 12 +
κ
2 − ir)

Zυ,κc,b (0,n; 12 + ir)

Γ( 12 −
κ
2 + ir)

φ̌(r)dr

cosh(πr)
.

Equating this with (3.62) yields the theorem.
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4
T H E T W I S T E D L I N N I K C O N J E C T U R E

Cancellation in the sum ∑
c∈Ca,b
c≤C

Sυ,κa,b (m,n; c)

c
, (4.1)

is inherently linked to analytic properties of the Kloosterman zeta function Zυ,κa,b (m,n; s).

It can be shown that if there is a pole s0 in the half-plane Re(s) > 1
2 , then s0 is real

and there is a Maass form with eigenvalue s0(1− s0). Conversely, one can show that

if there is a Maass form with eigenvalue s0(1− s0), then there is an n ∈ Z such that

Zυ,κ∞,∞(n,n; s) has a pole at s = s0. Consequently, if one can show that (4.1) is O(C2t),

then the smallest eigenvalue is at least 1
4 − t

2. This is how Selberg [Sel65] showed that

for congruence subgroups the smallest eigenvalue is at least 3
16 , by invoking the Weil

bound for the (classical) Kloosterman sums. If one were to consider a smooth cut-off in

(4.1) instead of a sharp cut-off the above discussion becomes an equivalence.

Taking into account that the (classical) Kloosterman sums are thought to undergo

random sign changes, one ought to believe that the sum (4.1) is Co(1) and hence the

smallest eigenvalue is at least 1
4 for congruence subgroups. The latter is know as the

Selberg eigenvalue conjecture and the former as the Linnik–Selberg conjecture on sums

of Kloosterman sums. We shall state the latter conjecture with the necessary ε safety

factor, which was pointed out by Sarnak–Tsimerman [ST09].

Conjecture 4.0.1. Let m,n ∈N. Then, we have

∑
c≤C

S(m,n; c)

c
�ε (mnC)

ε.

The range C ≥
√
mn is known as the Linnik range and the range C ≤

√
mn is known

as the Selberg range. The latter poses much more difficulty than the former as we shall

see. The first and basically the only improvement over what the Weil bound tells you
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was achieved by Kuznetsov [Kuz80] by establishing and exploiting his eponymous trace

formula. He showed ∑
c≤C

S(m,n; c)

c
�m,n C

1
6 log(2C)

1
3 .

The dependence on m,n, although not stated, can be made explicit in a trivial manner

by adding the term (mn)
1
4
+ε. This comes from estimating the Selberg range trivially.

Sarnak–Tsimerman [ST09] improved upon this. They showed∑
c≤C

S(m,n; c)

c
�ε (mnC)

ε
(
C

1
6 + (mn)

1
3 + (m+ n)

1
8 (mn)

θ
2

)
.

This result has been further generalised by Ganguly–Sengupta [GS12] to arithmetic

progressions c ≡ 0mod(N) and by Blomer–Milićević [BM15a] to progressions c ≡

amod(N) with (a,N) = 1. Motivated by an application to intrinsic Diophantine ap-

proximation, which we shall learn more about in Section 6.3, Browning–Kumaraswamy–

Steiner [BKS17] have proposed the following extension of the Linnik–Selberg conjecture.

Conjecture 4.0.2 (Twisted Linnik–Selberg). Let B ≥ 1 and let m,n ∈ Z be non-zero. Let

N ∈N and let a ∈ Z/NZ. Then, for any α ∈ [−B,B] we have∑
c≤C

c≡amodN

S(m,n; c)

c
e

(
2
√
mn

c
α

)
�ε,N ,B (|mn|C)ε,

for any ε > 0.

In this chapter, we shall recollect the progress that has been made towards this conjec-

ture by the author in [Ste17]. Let us introduce some simplifying notation: F . G means

|F | ≤ Kε(CmnN(1+ |α|))εG for some positive constant Kε, depending on ε, and every

ε > 0. The main theorem of [Ste17] reads as follows.

Theorem 4.0.1. Let C ≥ 1, α ∈ R, N ∈ N, and m,n ∈ Z with mn > 0, (m,n,N) = 1, and

N � min{(mn)
1
4 ,C

1
2 }. Then, we have∑

c≤C
c≡0mod(N)

S(m,n; c)

c
e

(
2
√
mn

c
α

)

+ 2π
∑

h∈B0(Γ0(N),1)
th∈i[0,θ]

√
mn · ρh(∞,m)ρh(∞,n)

cos(π|th|)

∫ ∞
√
mn
C

Y2|th|(x)e
iαxdx

x

.
C

1
6

N
1
3

+ (1+ |α|
1
3 )
(mn)

1
6

N
2
3

+
m

1
4 (m,N)

1
4 + n

1
4 (n,N)

1
4

N
1
2

+min

{
(mn)

1
8
+ θ

2 (mn,N)
1
8

N
1
2

,
(mn)

1
4 (mn,N)

1
4

N

}
,
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where Yt is the Bessel function of the second kind of order t and θ is the best known progress

towards the Ramanujan–Selberg conjecture.

A few remarks about this theorem are in order. First, we should remark that one

has θ ≤ 7
64 by the work of Kim–Sarnak [Kim03]. Next, we observe the appearance of a

main term, which is contrary to [GS12]. Indeed, the latter has an erroneous treatment

of the exceptional spectruma. One may further analyse the main term by making use

of asymptotics of the Bessel function of the second kind Yt(y) for y → 0. However, the

reader familiar with Bessel functions may know that these asymptotics behave quite

differently for t = 0 and t > 0 and therefore it would generate uniformity issues in the

parameter N . One may also bound the main term altogether. In this case, one gets the

following corollary.

Corollary 4.0.2. Assume the same assumptions as in Theorem 4.0.1. Then

∑
c≤C

c≡0mod(N)

S(m,n; c)

c
e

(
2
√
mn

c
α

)

.
C

1
6

N
1
3

+C2θ + (1+ |α|
1
3 )
(mn)

1
6

N
2
3

+
m

1
4 (m,N)

1
4 + n

1
4 (n,N)

1
4

N
1
2

+min

{
(mn)

1
8
+ θ

2 (mn,N)
1
8

N
1
2

,
(mn)

1
4 (mn,N)

1
4

N

}
.

As far as the restrictions go in Theorem 4.0.1, they are not very limiting. Indeed, if N ≥

C
1
2 , then the Weil bound, which gives the bound N−1C

1
2
+ε, is more than sufficient, and

if (mn)
1
4 ≤ N ≤ C

1
2 , then one is automatically in the easier Linnik range and for instance

the holomorphic contribution is negligible. One may also consider mn < 0, which would

lead one to analyse different Bessel transforms; or incorporate the further restriction

c ≡ amod(N ′) with (a,N ′) = 1 as in [BM15a]. However, for the latter, if one follows

the simplification suggested by Kiral–Young [KY17], then an analogue to Proposition

4.3.1 for the group Γ0(N)∩ Γ1(N ′) is required. In fact, the associated Kloosterman sums

for this group admit further cancellation as can be seen in [Hum16], thereby leading to

stronger results in terms of the parameter N ′.

a The compact domain to which they apply the mean value theorem of calculus varies and this may not be

circumvented, since if the exceptional spectrum is non-empty, then the function they consider has a pole at

0.
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For |α| < 1, one may improve Theorem 4.0.1 slightly, thereby recovering the results of

[ST09] and [GS12].

Theorem 4.0.3. Let C ≥ 1, α ∈ R with |α| < 1, N ∈ N and m,n ∈ Z with mn > 0,

N � min{(mn)
1
4 ,C

1
2 }, and (m,n,N) = 1. Then, we have∑

c≤C
c≡0mod(N)

S(m,n; c)

c
e

(
2
√
mn

c
α

)

+ 2π
∑

h∈B0(Γ0(N),1)
th∈i[0,θ]

√
mn · ρh(∞,m)ρh(∞,n)

cos(π|th|)

∫ ∞
√
mn
C

Y2|th|(x)e
iαxdx

x

. (1− |α|)−
1
2
−ε

(
m

1
8 (m,N)

1
8 + n

1
8 (n,N)

1
8

N
1
4

min

{
(mn)

θ
2 ,
m

1
8 (m,N)

1
8 + n

1
8 (n,N)

1
8

N
1
4

}

+
C

1
6

N
1
3

+
(mn)

1
6

N
2
3

+min

{
(mn)

1
16

+ 3θ
4 (mn,N)

1
16

N
1
4

,
(mn)

1
4 (mn,N)

1
4

N

})
and ∑

c≤C
c≡0mod(N)

S(m,n; c)

c
e

(
2
√
mn

c
α

)

. (1− |α|)−
1
2
−ε

(
m

1
8 (m,N)

1
8 + n

1
8 (n,N)

1
8

N
1
4

min

{
(mn)

θ
2 ,
m

1
8 (m,N)

1
8 + n

1
8 (n,N)

1
8

N
1
4

}

+
C

1
6

N
1
3

+
(mn)

1
6

N
2
3

+min

{
(mn)

1
16

+ 3θ
4 (mn,N)

1
16

N
1
4

,
(mn)

1
4 (mn,N)

1
4

N

})
+C2θ.

Rather than proving 4.0.1 directly, we shall prove a dyadic version thereof from which

we may deduce Theorem 4.0.1.

Theorem 4.0.4. Let α ∈ R, N ∈ N and m,n ∈ Z with mn > 0 and (m,n,N) = 1. Assume

N � min{(mn)
1
4 ,C

1
2 }. Then, we have∑

C≤c<2C
c≡0mod(N)

S(m,n; c)

c
e

(
2
√
mn

c
α

)

+ 2π
∑

h∈B0(Γ0(N),1)
th∈i[0,θ]

√
mn · ρh(∞,m)ρh(∞,n)

cos(π|th|)

∫ X

X
2

Y2|th|(x)e
iαxdx

x

.
C

1
6

N
1
3

+ (1+ |α|) (mn)
1
2

C
+
m

1
4 (m,N)

1
4 + n

1
4 (n,N)

1
4

N
1
2

+min

{
(mn)

θ
2
+ 1

8 (mn,N)
1
8

N
1
2

,
(mn)

1
4 (mn,N)

1
4

N

}
.
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For |α| < 1, we can do slightly better:

∑
C≤c<2C

c≡0mod(N)

S(m,n; c)

c
e

(
2
√
mn

c
α

)

+ 2π
∑

h∈B0(Γ0(N),1)
th∈i[0,θ]

√
mn · ρh(∞,m)ρh(∞,n)

cos(π|th|)

∫ X

X
2

Y2|th|(x)e
iαxdx

x

. (1− |α|)−
1
2
−ε

(
m

1
8 (m,N)

1
8 + n

1
8 (n,N)

1
8

N
1
4

min

{
(mn)

θ
2 ,
m

1
8 (m,N)

1
8 + n

1
8 (n,N)

1
8

N
1
4

}

+
C

1
6

N
1
3

+
(mn)

1
2

C
+min

{
(mn)

3θ
4
+ 1

16 (mn,N)
1
16

N
1
4

,
(mn)

1
4 (mn,N)

1
4

N

})
.

The proof is taken straight from the author’s work [Ste17] and follows the argument

of [ST09] and [GS12]. We replace the sharp cut-off with a smooth cut-off and use the

Kuznetsov trace formula. We shall restate the Kuznetsov trace formula 3.10.1 for the

Fuchsian group Γ0(N) with trivial multiplier system of weight 0.

Proposition 4.0.5 (Kuznetsov trace formula). Let N ∈ N and m,n ∈ Z be two integers

with mn > 0. Then, for any C3-class function f with compact support in ]0,∞[ one has

∑
c≡0mod(N)

S(m,n; c)

c
f

(
4π
√
mn

c

)
=HN (m,n; f) +MN (m,n; f) + EN (m,n; f),

where

HN (m,n; f) =
1

π

∑
k≡0mod(2)

k>0

∑
h∈Bk(Γ0(N),1)

(−1)
k
2 Γ(k)

(4π
√
mn)k−1

ψh(∞, |m|)ψh(∞, |n|)f̃(k− 1),

MN (m,n; f) =4π
∑

h∈B0(Γ0(N),1)

√
mn

cosh(πth)
ρh(∞, |m|)ρh(∞, |n|)f̂(th),

EN (m,n; f) =
∑
c sing.

∫ ∞
−∞

( n
m

)it
Z1,0
c,∞(0, |m|; 12 + it)Z1,0

c,∞(0, |n|; 12 + it)f̂(t)dt,

and the transforms are given by

f̃(t) =

∫ ∞
0

Jt(y)f(y)
dy

y
,

f̂(t) =
i

sinh(πt)

∫ ∞
0

J2it(x)− J−2it(x)
2

f(x)
dx

x
.
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We set f(x) = eiαxg(x) with g smooth real-valued bump function satisfying the fol-

lowing properties

g(x) = 1 for
2π
√
mn

C
≤ x ≤ 4π

√
mn

C
,

g(x) = 0 for x ≤ 2π
√
mn

C + T
and x ≥ 4π

√
mn

C − T
,

‖g′‖1 � 1 and ‖g′′‖1 �
C

X · T
,

(4.2)

where

X =
4π
√
mn

C
and 1 ≤ T ≤ C

2

is a parameter to be chosen at a later point. Note that we have Supp g ⊆ [X3 , 2X ]. We

now wish to compare the smooth sum

∑
c≡0mod(N)

S(m,n; c)

c
f

(
4π
√
mn

c
α

)
(4.3)

with the sharp cut-off in Theorem 4.0.4. By making use of the Weil bound for the Kloost-

erman sum, we find that their difference is bounded by

∑
C−T≤c≤C or
2C≤c≤2C+2T ,
c≡0mod(N)

1

c
|S(m,n; c)| ≤

∑
C−T≤c≤C or
2C≤c≤2C+2T
c≡0mod(N)

τ (c)√
c
(m,n, c)

1
2

≤ τ (N)√
N

∑
e|(m,n)

∑
C−T
Ne
≤c′≤ C

Ne
or

2C
Ne
≤c′≤ 2C+2T

Ne

τ (ec′)√
ec′

e
1
2

.
1√
N

∑
e|(m,n)

√
Ne√
C

(
1+

T

Ne

)

.
1√
C

(
(m,n)

1
2 +

T

N

)
.

(4.4)

Now, we apply the Kuznetsov trace formula (see Proposition 4.0.5) to the smooth sum

(4.3). This leads to the expression

∑
c≡0mod(N)

S(m,n; c)

c
f

(
4π
√
mn

c

)
= HN (m,n; f) +MN (m,n; f) + EN (m,n; f).

We shall deal with each of these terms separately. In what follows, we shall use many

estimates on the Bessel transforms of f , which we shall summarise here, but postpone

their proof until Section 4.5.
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4.1 the continuous spectrum

Lemma 4.0.6. Let f be as in (4.2). Then, we have

f̂(t), f̃(t)� 1+ | log(X)|+ log+(|α|)
1+X

1
2 + ||α|2 − 1|

1
2X

, ∀t ∈ R, (4.5)

f̂(it) = −1

2

∫ X

X
2

Y2t(x)e
iαxdx

x
+Oε,δ

(
1+

T

C
X−2t−ε

)
, ∀0 ≤ t ≤ 1

4
− δ, (4.6)

where log+(x) = max{0, log(x)}. For t ≥ 8, we have∫ t
2

0
Jt(y)f(y)

dy

y
� 1l[2X/3,∞[(t) · t−

1
2 e−

2
5
t, (4.7)

∫ t−t
1
3

t
2

Jt(y)f(y)
dy

y
� 1l[ 1

4
,∞[(X)1l[X/3,4X ](t) · t−1(log(t))

2
3 , (4.8)

∫ t+t
1
3

t−t
1
3

Jt(y)f(y)
dy

y
� 1l[ 1

4
,∞[(X)1l[3X/16,3X ](t) · t−1, (4.9)∫ ∞

t+t
1
3

Jt(y)f(y)
dy

y
� 1l[ 1

4
,∞[(X)1l[0,3X/2](t) · t−1min

{
1+ |1− |α||−

1
4 ,

(
X

t

) 1
2

}
, (4.10)

where 1lI is the characteristic function of the interval I. Finally, when |t| ≥ 1 and either |t| /∈[
1
12 ||α|

2 − 1|
1
2X, 2||α|2 − 1|

1
2X
]

or |α| ≤ 1 we have

f̂(t)� |t|−
3
2

(
1+min

{(
X

|t|

) 1
2

, ||α|2 − 1|−1
(
X

|t|

)− 3
2

})
, (4.11)

f̂(t)� C

T
|t|−

5
2

(
1+min

{(
X

|t|

) 3
2

, ||α|2 − 1|−2
(
X

|t|

)− 5
2

})
. (4.12)

One should mention that similar estimates have been derived previously by Jutila

[Jut99] for a slightly different class of functions and ranges.

4.1 the continuous spectrum

The goal of this section is to prove the following bound on the continuous contribution

EN (m,n; f) . 1. (4.13)

For this endeavour, we require the following lemma.

Lemma 4.1.1. Let N = N?N
2
� with N? square-free and let m,n positive integers. We have∑

c sing.

( n
m

)it
Z1,0
c,∞(0,m; 12 + it)Z1,0

c,∞(0,n;
1
2 + it)

�ε
(m,N?N�)

1
2 (n,N?N�)

1
2

N?N�
(mnN(1+ |t|))ε.
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Proof. This is part of [BM15a, Lemma 1].

Substituting this inequality into (4.13) yields the bound

EN (m,n; f) .
(m,N?N�)

1
2 (n,N?N�)

1
2

N?N�

∫ ∞
−∞

(1+ |t|)ε|f̂(t)|dt

.
∫ ∞
−∞

(1+ |t|)ε|f̂(t)|dt.

We split the integral up into three parts:

I1 = ±[ 1
12 ||α|

2 − 1|
1
2X, 2||α|2 − 1|

1
2X ],

I2 = [−max{1,X
1
2 }, max{1,X

1
2 }]\I1,

I3 = ±[max{1,X
1
2 },∞[\I1.

For I1, we use (4.5) and arrive at∫
I1
(1+ |t|)ε|f̂(t)|dt�ε

∫
I1
(1+ |t|)ε 1+ | log(X)|+ log+(|α|)

||α|2 − 1|
1
2X

dt

�ε (1+X)ε(1+ |α|)ε(1+ | log(X)|+ log+(|α|))

. 1.

For I2, we use (4.5) again and arrive at∫
I2
(1+ |t|)ε|f̂(t)|dt�ε

∫
I2
(1+ |t|)ε 1+ | log(X)|+ log+(|α|)

1+X
1
2

dt

�ε (1+X)ε(1+ | log(X)|+ log+(|α|))

. 1.

For I3, we use (4.11) and arrive at∫
I3
(1+ |t|)ε|f̂(t)|dt�ε

∫
I3
|t|−

3
2
+ε

(
1+

(
X

|t|

) 1
2

)
dt

�ε min{1,X−
1
4
+ε}+X

1
2 min{1,X−

1
2
+ε}

. 1.

This concludes the proof of (4.13).

4.2 the holomorphic spectrum

The goal of this section is to prove the following inequality:
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4.2 the holomorphic spectrum

HN (m,n; f) . 1+X. (4.14)

In order to prove this inequality, we choose our orthonormal basis as in (3.52). Then,

HN (m,n; f) is equal to and further bounded by

1

π

∑
k≡0mod(2)

k>0

∑
M |N

∑
h new

of level M

∑
d| N
M

ikΓ(k)
(4π
√
mn)k−1

ψhd(∞,m)ψhd(∞,n)f̃(k− 1)

.
∑

k≡0mod(2)
k>0

∑
M |N

∑
h new

of level M

∑
d| N
M

Γ(k)
(4π)k−1

N

M
|ψh(∞, 1)|2|f̃(k− 1)|

.
∑

k≡0mod(2)
k>0

∑
M |N

∑
h new

of level M

1

M
|f̃(k− 1)|

.
∑

k≡0mod(2)
k>0

k1+ε|f̃(k− 1)|,

where we have made use of (3.55), (3.56), and dimSk(Γ0(M), 1) . Mk (see Proposition

3.7.1). We split up the latter sum into k ≤ 9 and k > 9. By using (4.5), we find∑
k≡0mod(2)

9≥k>0

k1+ε|f̃(k− 1)| � 1+ | log(X)|+ log+(|α|) . 1.

We also find ∑
k≡0mod(2)

k>9

k1+ε|f̃(k− 1)| ≤ S1 + S2 + S3 + S4,

where

S1 =
∑

k≡0mod(2)
k>9

k1+ε

∣∣∣∣∣
∫ k−1

2

0
Jk−1(y)f(y)

dy

y

∣∣∣∣∣ ,
S2 =

∑
k≡0mod(2)

k>9

k1+ε

∣∣∣∣∣∣
∫ (k−1)−(k−1)

1
3

k−1
2

Jk−1(y)f(y)
dy

y

∣∣∣∣∣∣ ,
S3 =

∑
k≡0mod(2)

k>9

k1+ε

∣∣∣∣∣∣
∫ (k−1)+(k−1)

1
3

(k−1)−(k−1)
1
3

Jk−1(y)f(y)
dy

y

∣∣∣∣∣∣ ,
S4 =

∑
k≡0mod(2)

k>9

k1+ε

∣∣∣∣∣
∫ ∞
(k−1)+(k−1)

1
3

Jk−1(y)f(y)
dy

y

∣∣∣∣∣ .
By using (4.7), we find

S1 �ε

∑
k>9

k
1
2
+εe−

2
5
k �ε 1.
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4.3 the non-holomorphic spectrum

By using (4.8), we find

S2 �ε

∑
X/3≤k−1≤4X

kε . 1+X.

By using (4.9), we find

S3 �ε

∑
3X/16≤k−1≤3X

kε . 1+X.

By using (4.10), we find

S4 �ε

∑
3X/2≥k−1>8

kε
(
X

k

) 1
2

. 1+X.

The claimed inequality (4.14) now follows.

4.3 the non-holomorphic spectrum

In this section, we shall prove the following two estimates

MN (m,n; f) + 2π
∑

h∈B0(Γ0(N),1)
th∈i[0,θ]

√
mn · ρh(∞,m)ρh(∞,n)

cos(π|th|)

∫ X

X
2

Y2|th|(x)e
iαxdx

x

.
(
C

T

) 1
2

+ (1+ |α|)X +

(
1+

T

C
X−2θ

)(
1+

m
1
4 (m,N)

1
4 + n

1
4 (n,N)

1
4

N
1
2

+min

{
(mn)

θ
2
+ 1

8 (mn,N)
1
8

N
1
2

,
(mn)

1
4 (mn,N)

1
4

N

})
(4.15)

and for |α| < 1 also

MN (m,n; f) + 2π
∑

h∈B0(Γ0(N),1)
th∈i[0,θ]

√
mn · ρh(∞,m)ρh(∞,n)

cos(π|th|)

∫ X

X
2

Y2|th|(x)e
iαxdx

x

.(1− |α|)−
1
2
−ε

[(
C

T

) 1
2

+

(
1+

T

C
X−2θ

)

×

(
1+

m
1
8 (m,N)

1
8 + n

1
8 (n,N)

1
8

N
1
4

min

{
(mn)

θ
2 ,
m

1
8 (m,N)

1
8 + n

1
8 (n,N)

1
8

N
1
4

}

+min

{
(mn)

3θ
4
+ 1

16 (mn,N)
1
16

N
1
4

,
(mn)

1
4 (mn,N)

1
4

N

})]
.

(4.16)

We shall require the following proposition.

Proposition 4.3.1. Let A ≥ 1 and n ∈N. Then, we have∑
h∈B0(Γ0(N),1)
|th|≤A

n

cosh(πth)
|ρh(∞,n)|2 �ε A

2 +

√
n

N
(n,N)

1
2 (nN)ε.
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4.3 the non-holomorphic spectrum

Proof. For the full modular group, this is due to Kuznetsov [Kuz80, Eq. (5.19)] and only

minor modifications yield the above, see for example [Top16, Lemma 2.9] or [GS12,

Theorem 9].

Let us first prove (4.15). We split the summation over th in MN (m,n; f) into various

ranges I1, . . . , I4, which are treated individually. They are

I1 =
[
0,max

{
1,X

1
2

}]
,

I2 =
[

1
12 ||α|

2 − 1|
1
2X, 2||α|2 − 1|

1
2X
]
\I1,

I3 =
[
max

{
1,X

1
2

}
,∞
[
\I2,

I4 = i

[
0,

1

2

]
.

The first way to treat the range I1 is to choose the basis (3.51) and use (3.53) as well

as (3.54):

∑
h∈B0(Γ0(N),1)

th∈I1

√
mn

cosh(πth)
ρh(∞,m)ρh(∞,n)f̂(th)

. (mn)θ
∑
M |N

1

M

∑
h∈B0(Γ0(N),1)

th∈I1
new of level M

∑
d| N
M

(1+ |th|)ε sup
t∈I1
|f̂(t)|.

Next, we use (4.5) to bound the transform and a uniform Weyl law to bound the number

of Maass forms h of level M with th ≤ T by M1+εT 2 (see for example [Pal12, Corollary

3.2.3.]). We arrive at the bound

. (mn)θ
(
1+X

1
2

)
. (4.17)
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4.3 the non-holomorphic spectrum

A second way to treat the range I1 is to apply the Cauchy–Schwarz inequality in con-

junction with Proposition 4.3.1 and (4.5):

∑
h∈B0(Γ0(N),1)

th∈I1

√
mn

cosh(πth)
ρh(∞,m)ρh(∞,n)f̂(th)

≤

 ∑
h∈B0(Γ0(N),1)

th∈I1

m

cosh(πth)
|ρh(∞,m)|2


1
2
 ∑
h∈B0(Γ0(N),1)

th∈I1

n

cosh(πth)
|ρj(∞,n)|2


1
2

sup
t∈I1
|f̂(t)|

.
(
1+X +

√
m

N
(m,N)

1
2

) 1
2
(
1+X +

√
n

N
(n,N)

1
2

) 1
2 1

1+X
1
2

.1+X
1
2 +

m
1
4 (m,N)

1
4 + n

1
4 (n,N)

1
4

N
1
2

+
(mn)

1
4 (mn,N)

1
4

N(1+X
1
2 )

.

(4.18)

We treat the range I2 in exactly the same manner and arrive at the inequalities

∑
th∈I2

√
mn

cosh(πth)
ρh(m)ρh(n)f̂(th) . (mn)θ

(
1+ ||α|2 − 1|

1
2X
)2

1+ ||α|2 − 1|
1
2X

. (mn)θ
(
1+ ||α|2 − 1|

1
2X
) (4.19)

and ∑
h∈B0(Γ0(N),1)

th∈I2

√
mn

cosh(πth)
ρh(∞,m)ρh(∞,n)f̂(th)

.

(
1+ ||α|2 − 1|

1
2X + m

1
4 (m,N)

1
4

N
1
2

)(
1+ ||α|2 − 1|

1
2X + n

1
4 (n,N)

1
4

N
1
2

)
1+X

1
2 + ||α|2 − 1|

1
2X

.1+ ||α|2 − 1|
1
2X +

m
1
4 (m,N)

1
4 + n

1
4 (n,N)

1
4

N
1
2

+
(mn)

1
4 (mn,N)

1
4

N(1+ ||α|2 − 1|
1
2X)

.

(4.20)

We further split the range I3 into the dyadic ranges

I3(l) = [2lmax{1,X
1
2 }, 2l+1max{1,X

1
2 }]\I2, l ≥ 0.

Again, we can estimate

∑
h∈B0(Γ0(N),1)

th∈I3(l)

√
mn

cosh(πth)
|ρh(∞,m)ρh(∞,n)| . (mn)θ22l(1+X) (4.21)

66



4.3 the non-holomorphic spectrum

and

∑
h∈B0(Γ0(N),1)

th∈I3(l)

√
mn

cosh(πth)
|ρh(∞,m)ρh(∞,n)|

.22l(1+X) + 2l
(
1+X

1
2

)m 1
4 (m,N)

1
4 + n

1
4 (n,N)

1
4

N
1
2

+
(mn)

1
4 (mn,N)

1
4

N
, (4.22)

However, this time we use (4.11) and (4.12) to deal with the transform. We have

sup
t∈I3(l)

|f̂(t)| .


min

{
1+X

1
2

22l(1+X)
, CT

1+X
3
2

24l(1+X)2

}
, for l ≤ log2(max{1,X

1
2 }),

min

{
1

2
3
2 l(1+X)

3
4
, CT

1

2
5
2 l(1+X)

5
4

}
, for l > log2(max{1,X

1
2 }).

(4.23)

By combining (4.21), (4.22) and (4.23), we find that the contribution stemming from

l ≤ log2(max{1,X
1
2 }) is

.
∑

l≤log2(max{1,X
1
2 })

(
1+X

1
2 + 2−l

m
1
4 (m,N)

1
4 + n

1
4 (n,N)

1
4

N
1
2

+min

{
(mn)θ(1+X)

1
2 , 2−2l

(mn)
1
4 (mn,N)

1
4

N(1+X)
1
2

})

. 1+X
1
2 +

m
1
4 (m,N)

1
4 + n

1
4 (n,N)

1
4

N
1
2

+min

{
(mn)

θ
2
+ 1

8 (mn,N)
1
8

N
1
2

,
(mn)

1
4 (mn,N)

1
4

N

}
,

(4.24)

and the contribution from l > log2(max{1,X
1
2 }) is

.
∑

l>log2(max{1,X
1
2 })

((
C

T

) 1
2
+δ

2−δl + 2−
l
2
m

1
4 (m,N)

1
4 + n

1
4 (n,N)

1
4

N
1
2

+ 2−
l
2 min

{
(mn)

θ
2
+ 1

8 (mn,N)
1
8

N
1
2

,
(mn)

1
4 (mn,N)

1
4

N

})

.
(
C

T

) 1
2

+
m

1
4 (m,N)

1
4 + n

1
4 (n,N)

1
4

N
1
2

+min

{
(mn)

θ
2
+ 1

8 (mn,N)
1
8

N
1
2

,
(mn)

1
4 (mn,N)

1
4

N

}
,

(4.25)

for a sufficiently small δ > 0.
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4.3 the non-holomorphic spectrum

For the contribution from I4, we first note that we have |th| ≤ θ for th ∈ I4 by [Kim03].

We insert (4.6) and find further that

4π
∑

h∈B0(Γ0(N),1)
th∈i[0,θ]

√
mn

cosh(πth)
ρh(∞,m)ρh(∞,n)

(
−1

2

∫ X

X
2

Y2|th|(x)e
iαxdx

x
+Oε

(
1+

T

C
X−2|th|−ε

))

= −2π
∑

h∈B0(Γ0(N),1)
th∈i[0,θ]

√
mn · ρh(∞,m)ρh(∞,n)

cos(π|th|)

∫ X

X
2

Y2|th|(x)e
iαxdx

x
+

Oε

((
1+

T

C
X−2θ−ε

)
min

{
(mn)θ, 1+

m
1
4 (m,N)

1
4 + n

1
4 (n,N)

1
4

N
1
2

+
(mn)

1
4 (mn,N)

1
4

N

})
.

(4.26)

Combining the minimum of (4.17) and (4.18), the minimum of (4.19) and (4.20), (4.24),

(4.25), and (4.26) gives (4.15).

Let us now turn our attention to (4.16). This time, we split up into the intervals

I1 = [0, 1] ,

I2 = [1,∞[ ,

I3 = i

[
0,

1

2

]
.

By making use of (4.5), we find that the contribution from I1 is bounded by

. min

{
(mn)θ, 1+

m
1
4 (m,N)

1
4 + n

1
4 (n,N)

1
4

N
1
2

+
(mn)

1
4 (mn,N)

1
4

N

}
. (4.27)

As before, we split up I2 into dyadic ranges I2(l) = [2l, 2l+1], l ≥ 0 and use

sup
t∈I2(l)

|f̂(t)| . min

{
(1− |α|)−

1
4 2−

3
2
l,
C

T
(1− |α|)−

3
4 2−

5
2
l

}
,

which follows from (4.11) and (4.12). Hence, we find that the contribution from I2 is

bounded by

. (1− |α|)−
1
2
− δ

2

∑
l≥0

((
C

T

) 1
2
+δ

2−δl+

min

{
(mn)

θ
2
−θδm

1
8
+ δ

4 (m,N)
1
8
+ δ

4 + n
1
8
+ δ

4 (n,N)
1
8
+ δ

4

N
1
4
+ δ

2

2−δl,
m

1
4 (m,N)

1
4 + n

1
4 (n,N)

1
4

N
1
2

2−
1
2
l

}

+min

{
(mn)

3θ
4
−θδ (mn)

1
16

+ δ
4 (mn,N)

1
16

+ δ
4

N
1
4
+δ

2−2δl,
(mn)

1
4 (mn,N)

1
4

N
2−

3
2
l

})
,
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which is

. (1− |α|)−
1
2
−ε

(
m

1
8 (m,N)

1
8 + n

1
8 (n,N)

1
8

N
1
4

min

{
(mn)

θ
2 ,
m

1
8 (m,N)

1
8 + n

1
8 (n,N)

1
8

N
1
4

}

+

(
C

T

) 1
2

+min

{
(mn)

3θ
4
+ 1

16 (mn,N)
1
16

N
1
4

,
(mn)

1
4 (mn,N)

1
4

N

})
(4.28)

for δ > 0 small enough. The contribution from I3 is the same as in (4.26). Combining

(4.27), (4.28), and (4.26) gives (4.16).

4.4 putting everything together

In order to show Theorem 4.0.4, we add up all the inequalities (4.4), (4.13), (4.14), (4.15)

respectively (4.16), and make the choice T = O(N
2
3C

2
3 ), which is allowed since N �

min{(mn)
1
4 ,C

1
2 }. One may note that we have

(m,n)
1
2

√
C

≤ X
1
2 ≤ 1+X

and
T

C
X−2θ � N

2
3
−4θC2θ− 1

3 ·N4θ(mn)−θ � 1.

Theorem 4.0.1 follows at once by estimating the range c ≤ (1+ |α|
2
3 )N

2
3 (mn)

1
3 trivially

using the Weil bound, which gives

∑
c≤(1+|α|

2
3 )N

2
3 (mn)

1
3

c≡0mod(N)

|S(m,n; c)|
c

.

(
(1+ |α|

2
3 )N

2
3 (mn)

1
3

) 1
2

N
. (1+ |α|

1
3 )
(mn)

1
6

N
2
3

.

For the remaining range (1+ |α|
2
3 )N

2
3 (mn)

1
6 ≤ c ≤ C, we use Theorem 4.0.4. Further-

more, note that ∫ ∞
1
|Y2t(x)|

dx

x
�
∫ ∞
1

x−
3
2dx� 1

uniformly for t ≤ θ and hence we have

∑
h∈B0(Γ0(N),1)

th∈i[0,θ]

√
mn · ρh(∞,m)ρh(∞,n)

cos(π|th|)

∫ ∞
1

Y2|th|(x)e
iαxdx

x

. min

{
(mn)θ, 1+

m
1
4 (m,N)

1
4 + n

1
4 (n,N)

1
4

N
1
2

+
(mn)

1
4 (mn,N)

1
4

N

}
.
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4.5 transform estimates

This proves Theorem 4.0.1. In order to prove Corollary 4.0.2, we need to show

∑
h∈B0(Γ0(N),1)

th∈i[0,θ]

√
mn · ρh(∞,m)ρh(∞,n)

cos(π|th|)

∫ 1

X
Y2|th|(x)e

iαxdx

x
. C2θ,

when C ≥
√
mn. This follows from the two estimates∫ 1

X
|Y2t(x)|

dx

x
�ε

∫ 1

X
x−2θ−1−εdx�ε X

−2θ−ε

and ∑
h∈B0(Γ0(N),1)

th∈i[0,θ]

√
mn · |ρh(∞,m)ρh(∞,n)|

cos(π|th|)
�ε (mn)

θ+ε.

Theorem 4.0.3 is proved analogously.

4.5 transform estimates

In this section, we prove the claimed upper bounds in Lemma 4.0.6 on the transforms

of f . Since all the estimates are very different in nature, we split them up into multiple

lemmata. We generally follow the arguments of [ST09] and [DI83], but tweak them to

account for our introduced twist. First, we shall need two preliminary lemmata, which

will be used frequently.

Lemma 4.5.1. Let F ,G ∈ C([A,B],C) with G having a continuous derivative. Then,∣∣∣∣∫ B

A
F (x)G(x)dx

∣∣∣∣� (‖G‖∞ + ‖G′‖1) sup
C∈[A,B]

∣∣∣∣∫ C

A
F (x)dx

∣∣∣∣ .
Proof. We integrate by parts and find∫ B

A
F (x)G(x)dx =

∫ B

A
F (x)dx ·G(B)−

∫ B

A

∫ y

A
F (x)dx ·G′(y)dy,

from which the first statement is trivially deduced.

Lemma 4.5.2. Let G,H ∈ C1([A,B],C) and assume G has a zero and H ′ has at most K zeros.

Then, we have

‖GH‖∞ + ‖(GH)′‖1 �K ‖G′‖1‖H‖∞.
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4.5 transform estimates

Proof. We have ‖GH‖∞ ≤ ‖G‖∞‖H‖∞ and ‖G‖∞ ≤ ‖G′‖1 since we have G(b) =∫ b
a G
′(x)dx, where a is a zero of G. Furthermore, we have

‖(GH)′‖1 ≤ ‖G′H‖1 + ‖GH ′‖1 ≤ ‖G′‖1‖H‖∞ + ‖G‖∞‖H ′‖1 ≤ ‖G′‖1(‖H‖∞ + ‖H ′‖1)

and

‖H ′‖1 ≤ 2(K + 1)‖H‖∞

by splitting up the integral into intervals on which H ′ has a constant sign.

Lemma 4.5.3. Let f be as in (4.2) and |α| ≤ 1. Then, we have

f̃(t)� 1+ | log(X)|
1+X

1
2 + |1− |α|2|

1
2X

, ∀t ∈ R.

Proof. We follow the proof of [DI83, Lemma 7.1] and [ST09, Prop. 5]. To prove the first

statement we use the Bessel representation (A.11)

Jt(x) =
1

2π

∫ 2π

0
ei(x sin ξ−tξ)dξ.

Integration by parts yields∫ ∞
0

eix sin ξ
f(x)

x
dx =

∫ ∞
0

eix(sin ξ+α)
g(x)

x
dx

=
i

sin ξ + α

∫ ∞
0

eix(sin ξ+α)
(
g(x)

x

)′
dx

� min
{
1,X−1| sin ξ + α|−1

}
.

Hence, we find

f̃(t)�
∫ 2π

0
min

{
1,X−1| sin ξ + α|−1

}
dξ.

Now, clearly f̃(t) � 1. For X ≥ 1, we can do better though. We have | sin ξ + α| ≥

|| sin ξ| − |α||. Thus, we may assume ξ ∈ [0, π2 ] and α ≥ 0. Set α = sinφ with φ ∈ [0, π2 ].

Then, we have

sin ξ − α = 2 sin

(
ξ − φ
2

)
sin

(
π− ξ − φ

2

)
.

Now, for x ∈ [−π
2 ,

π
2 ] we have | sin(x)| � |x|. Thus,

f̃(t)�
∫ π

2

0
min

{
1,X−1|ξ − φ|−1|π− ξ − φ|−1

}
dξ

�
∫ π

2

0
min

{
1,X−1|ξ − φ|−1|π2 − φ|

−1,X−1|ξ − φ|−2
}
dξ

� min

{
1+ log(X)

|π2 − φ|X
,X−

1
2

}
.

Now, we just have to note that π
2 − φ � sin(π2 − φ) =

√
1− |α|2.
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Lemma 4.5.4. Let f be as in (4.2) and |α| ≥ 1. Then, we have

f̃(t)� 1+ | log(X)|
1+X

1
2 + ||α|2 − 1|

1
2X

, ∀t ∈ R.

Proof. As before, we find f̃(t)� 1 and for X ≥ 1 we have

f̃(t)�
∫ π

2

0
min

{
1,X−1(|α| − | sin ξ|)−1

}
dξ

�
∫ π

2

0
min

{
1,X−1(|α| − 1+ 1

π (
π
2 − ξ)

2)−1
}
dξ

�
∫ π

2

0
min

{
1,X−1(|α| − 1)−1,X−1(|α| − 1)−

1
2 (π2 − ξ)

−1,X−1(π2 − ξ)
2
}
dξ

� min

{
1

||α| − 1|X
,
1+ log(X)

||α| − 1|
1
2X

,X−
1
2

}
.

We also require some more refined estimates. For this, we consider the different re-

gions of the J-Bessel function.

Lemma 4.5.5. Let f as in 4.2 and |α| ≤ 1. Then, we have for t ≥ 8∫ t
2

0
Jt(y)f(y)

dy

y
� 1l[2X/3,∞[(t) · t−

1
2 e−

2
5
t,

∫ t−t
1
3

t
2

Jt(y)f(y)
dy

y
� 1l[ 1

4
,∞[(X)1l[X/3,4X ](t) · t−1(log(t))

2
3 ,

∫ t+t
1
3

t−t
1
3

Jt(y)f(y)
dy

y
� 1l[ 1

4
,∞[(X)1l[3X/16,3X ](t) · t−1,∫ ∞

t+t
1
3

Jt(y)f(y)
dy

y
� 1l[ 1

4
,∞[(X)1l[0,3X/2](t) · t−1min

{
|1− |α||−

1
4 ,

(
X

t

) 1
2

}
, (4.29)

where 1lI is the characteristic function of the interval I.

Proof. We require some uniform estimates on the J-Bessel functions of real order. For

small argument, we have exponential decay:

0 ≤ Jt(x) ≤
e−tF (0,x/t)

(1− (x/t)2)
1
4
√
2πt

, ∀x < t, (4.30)

where F (0,x) = log
(
1+
√
1−x2
x

)
−
√
1− x2. The left-hand side follows from the fact that

the first zero of the Bessel function of order t is > t and the right-hand side follows

from [Wat44, pp. 252-255]. We will also make use of Langer’s formulae see [EMOT81,

pp. 30,89]. The first formula is

Jt(x) = w−
1
2 (w− arctan(x))

1
2

(√
3

2
J 1

3
(z)− 1

2
Y 1

3
(z)

)
+O(t−

4
3 ), ∀x > t, (4.31)
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where

w =

√
x2

t2
− 1 and z = t(w− arctan(w)).

The second one is

Jt(x) =
1

π
w−

1
2 (artanh(w)−w)

1
2K 1

3
(z) +O(t−

4
3 ), ∀x < t, (4.32)

where

w =

√
1− x2

t2
and z = t(artanh(w)−w).

And finally, for the transitional range |x− t| ≤ t
1
3 , we have

Jt(x)� t−
1
3 , (4.33)

by [Wat44, pp. 244-247].

The first inequality follows directly from (4.30)∫ t
2

0
Jt(y)f(y)

dy

y
� t−

1
2 e−

2
5
t · X
X

.

Note, that if X ≤ 1
2 , then this covers everything. Thus, we may assume X ≥ 1

2 from now

on. For the range [ t2 , t− t
1
3 ], we use (4.32) and z

1
2K 1

3
(z)� e−z, ∀z ≥ 0. Thus, we find

Jt(y)� (t2 − y2)−
1
4 e−z +O(t−

4
3 ).

Now, if y ≤ min{t− 9t
1
3 (log t)

2
3 , t− t

1
3 } we have z ≥ log t and thus Jt(y) � t−

4
3 , other-

wise we have Jt(y)� t−
1
3 . We conclude

∫ t−t
1
3

t
2

Jt(y)f(y)
dy

y
� t−

4
3 · X
X

+ t−
1
3 · t

1
3 (log(t))

2
3

t
.

For the range t− t
1
3 ≤ y ≤ t+ t

1
3 , we use (4.33) and get

∫ t+t
1
3

t−t
1
3

Jt(y)f(y)
dy

y
� t−

1
3 · t

1
3

t
.

We are left to deal with the range t+ t
1
3 ≤ y. We make a change of variable y → ty and

we are left to estimate ∫ ∞
1+t−

2
3

Jt(ty)e
iαtyg(ty)

dy

y
. (4.34)

We make use of (4.31) and find z � 1 in this range of y. By making use of Langer’s

formula (4.31), we introduce an error of the size

� t−
4
3 · X
X

,
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which is sufficient. Since z � 1, we are able to make use of the classical estimates (A.18),

(A.19):

J 1
3
(z) =

√
2

πz

(
cos(z − π

6 −
π
4 ) +O(z−1)

)
,

Y 1
3
(z) =

√
2

πz

(
sin(z − π

6 −
π
4 ) +O(z−1)

)
.

(4.35)

Inserting (4.35) into (4.34) introduces another error of the size

t−
1
2

∫ ∞
1+t−

2
3

w−
1
2 z−1g(ty)

dy

y
,

where w =
√
y2 − 1 and z = t(w− arctan(w)). We have z � tmin{w3,w} and thus we

are able to estimate the above as

� t−
3
2

∫ 2

1+t−
2
3

g(ty)

(y2 − 1)
7
4 y
dy+ t−

3
2

∫ ∞
2

g(ty)

(y2 − 1)
3
4 y
dy

� t−
3
2

∫ 2

1+t−
2
3

g(ty)y

(y2 − 1)
7
4

dy+ t−
3
2

∫ ∞
2

g(ty)

y
5
2

dy

� ‖g′‖1 · t−1 + t−
3
2 ,

where we have made use of Lemmata 4.5.1 and 4.5.2 with F (y) = y(y2 − 1)−
7
4 and

G(y) = g(ty), respectively F (y) = y−
5
2 and G(y) = g(ty). This is again sufficient. For

the main term, we have to consider

t−
1
2

∫ ∞
1+t−

2
3

eit(±ω(y)+αy)
g(ty)

(y2 − 1)
1
4 y
dy, (4.36)

where
ω(y) =

√
y2 − 1− arctan

√
y2 − 1,

ω′(y) =

√
y2 − 1

y
.

We would like to integrate t(±ω′(y) +α)eit(±ω(y)+αy) by parts, but for the sign ‘−sign(α)’

and y0 = (1− α2)−
1
2 , we have ω′(y0) = |α| and we pick up a stationary phase. Let us

first assume α is close to 0, such that y0 < 1+ t−
2
3 . For |α| � t−

1
3 or the sign ‘sign(α)’, we

have | ± ω′(1+ t−
2
3 ) + α| � t−

1
3 and we get by means of Lemmata 4.5.1 and 4.5.2 with

F (y) = (±ω′(y) + α)eit(±ω(y)+αy),G(y) = g(ty) and H(y) = [(±ω′(y) + α)(y2 − 1)
1
4 y]−1

a satisfying contribution of t−1. So, from now on, we can assume α > 0, α ≥ kt−
1
3 , for

some small constant k, and the sign being ‘−’. We treat first the case α < 1, where we

make use of a Taylor expansion around y0. We split up the integral (4.36) into three parts

I1, I2, I3 corresponding to the intervals [1 + t−
2
3 , y0 − A], [y0 − A, y0 + A], [y0 + A,∞[,

respectively. For I1 and I3, we again make use of Lemmata 4.5.1 and 4.5.2 with F (y) =
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(ω′(y)− α)eit(ω(y)−αy),G(y) = g(ty), and H(y) = [(ω′(y)− α)(y2 − 1)
1
4 y]−1. Thus, we

need lower bounds on

R(x) =
√
x2 − 1− αx and (x2 − 1)

1
4 .

We have

R′(x) =
x√
x2 − 1

− α and R′′(x) = − 1

(x2 − 1)
3
2

.

We have that R′(x) is decreasing and positive and hence R(x) is increasing with a zero

at y0. Furthermore, we have R′′(x) is increasing and negative. We conclude

R(y0 +A) ≥ R(y0) + F ′(y0) ·A+R′′(y0) ·
A2

2

=
1− α2

α
·A−

(
1− α2

α2

) 3
2

· A
2

2

=
1− α2

α
·A ·

(
1− (1− α2)

1
2

α2
· A
2

)

� 1− α2

α
·A,

for A ≤ α2(1− α2)−
1
2 . We also have

−R(y0 −A) ≥ −R(y0) +R′(y0)A

� 1− α2

α
·A.

For the second factor, we have

((y0 +A)2 − 1)
1
4 ≥

(
α2

1− α2

) 1
4

and

((y0 −A)2 − 1)
1
4 ≥

(
α2

1− α2
− 2A

(1− α2)
1
2

) 1
4

�
(

α2

1− α2

) 1
4

for A ≤ 1
4α

2(1−α2)−
1
2 . Thus, for A ≤ 1

4α
2(1−α2)−

1
2 , we find that the contribution from

I3 is at most

t−
3
2

1(
1−α2

α

)
A ·
(

α2

1−α2

) 1
4

� t−
3
2

α
1
2

(1− α2)
3
4A

.

We claim that −R(x)(x2 − 1)
1
4 increases first and then decreases in [1, y0]. For this, it

suffices to prove that its derivative has exactly one zero in that interval and is positive at

1+ ε. Note, that since our function is zero at the endpoints, we have by Rolle’s Theorem

that there is at least a zero of the derivative. The derivative is

3αx2 − 3x(x2 − 1)
1
2 − 2α

2(x2 − 1)
3
4

,
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which is clearly positive at 1+ ε. Assume now that we have two zeros y1, y2 in [1, y0].

They both satisfy the equation

3αx2 − 3x(x2 − 1)
1
2 − 2α = 0⇒ 9(1− α2)x4 + (12α2 − 9)x2 − 4α2 = 0.

Now, by Vieta’s formula we have

2 ≤ y21 + y22 =
9− 12α2

9(1− α2)
=

4

3
− 1

3(1− α2)
≤ 4

3

and thus a contradiction. With this information, we conclude that if α ≥ Kt−
1
3 , for some

large constant K, we have that the contribution from I1 is at most

max

{
t−1, t−

3
2

α
1
2

(1− α2)
3
4A

}
.

Furthermore, we estimate the integral over I2 trivially and get the bound

t−
1
2A

(1− α2)
3
4

α
1
2

.

By choosing A = t−
1
2α

1
2 (1− α2)−

1
2 , which we are allowed for K large enough, we get

that (4.36) is bounded by

t−1(1− |α|)−
1
4 .

We are left to deal with the case α � t−
1
3 . In this case, we elongate the interval I2 to

[1+ t−
2
3 , y0 + A] and estimate trivially again. By setting A = 1

4α
2(1− α2)−

1
2 , we find

that in this case one also has a bound of t−1 for I2, I3. This proves the first half of (4.29).

Let us assume now that α ≥ 2
√
2

3 such that α is close to 1 and y0 ≥ 3. Assume

2X/t ≤ y0
2 . In this case, the integral over I2 and I3 are 0, furthermore we have

min
x∈[1+t−

2
3 ,y0/2]

x∈ 1
t
Supp g

−R(x)(x2 − 1)
1
4 = min

x∈[1+t−
2
3 ,y0/2]

x∈ 1
t
Supp g

1− (1− α2)x2

αx+
√
x2 − 1

(x2 − 1)
1
4

� min

{
t−

1
6 ,

(
X

t

)− 1
2

}
,

thus the contribution from I1 is bounded by

t−
3
2

(
t
1
6 +

(
X

t

) 1
2

)
.

Similarly, for 1
3X/t ≥ 2y0, we have that the integral over I1 and I2 are 0, and furthermore

min
x∈[2y0,∞[
x∈ 1

t
Supp g

R(x)(x2 − 1)
1
4 = min

x∈[2y0,∞[
x∈ 1

t
Supp g

(1− α2)x2 − 1

αx+
√
x2 − 1

(x2 − 1)
1
4

�
(
X

t

)− 1
2

,
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hence the contribution from I3 is bounded by

t−
3
2

(
X

t

) 1
2

.

Finally, when X/t � y0 we are able to replace |1− |α||−
1
4 by (X/t)

1
2 , which proves the

last inequality in full for |α| < 1.

Now, let us have a look at α = 1. We proceed as before only that this time the sta-

tionary phase is at infinity. Thus, we can directly apply Lemmata 4.5.1 and 4.5.2 with

F (y) = (ω′(y)− 1)eit(ω(y)−1y),G(y) = g(ty), and H(y) = [(ω′(y)− 1)(y2 − 1)
1
4 y]−1. We

need an upper bound on the quantity

1

(y−
√
y2 − 1)(y2 − 1)

1
4

for y ∈ [1+ t−
2
3 ,∞[ and ty ∈ Supp g.

This function decreases and then increases. Thus, it takes its maximum at the boundary.

The values at the boundary are easily bounded by

max

{
t
1
6 ,

(
X

t

) 1
2

}
and therefore we find that the same upper bound as for the case |α| < 1 holds for

|α| = 1.

Lemma 4.5.6. Let f as in 4.2 and |α| ≥ 1. Then, we have for t ≥ 8∫ t
2

0
Jt(y)f(y)

dy

y
� 1l[2X/3,∞[(t) · t−

1
2 e−

2
5
t,

∫ t−t
1
3

t
2

Jt(y)f(y)
dy

y
� 1l[ 1

4
,∞[(X)1l[X/3,4X ](t) · t−1(log(t))

2
3 ,

∫ t+t
1
3

t−t
1
3

Jt(y)f(y)
dy

y
� 1l[ 1

4
,∞[(X)1l[3X/16,3X ](t) · t−1,∫ ∞

t+t
1
3

Jt(y)f(y)
dy

y
� 1l[ 1

4
,∞[(X)1l[0,3X/2](t) · t−1min

{
1+ ||α| − 1|−

1
4 ,

(
X

t

) 1
2

}
,

where 1lI is the characteristic function of the interval I.

Proof. We follow the argumentation of the previous lemma. The first three inequalities

follow immediately. For the last inequality, we need a lower bound on

min
y≥1+t−

2
3

y�X/t

∣∣∣(|α| − ω′(y))(y2 − 1)
1
4 y
∣∣∣� min

y≥1+t−
2
3

y�X/t

(
|α| − 1+

y−
√
y2 − 1

y

)
(y2 − 1)

1
4 y

� min
y≥1+t−

2
3

y�X/t

(
|α| − 1+

1

y2

)
(y2 − 1)

1
4 y.
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If X/t � 1, then the minimum is at least |α|t−
1
6 , which contributes t−

4
3 |α|−1 � t−1,

otherwise X/t� 1, in which case the minimum is at least

max

{
||α| − 1|

(
X

t

) 3
2

,

(
X

t

)− 1
2

}
� max

{
||α| − 1|

1
4 ,

(
X

t

)− 1
2

}
,

giving a contribution of

t−
3
2 min

{
||α| − 1|−

1
4 ,

(
X

t

) 1
2

}
.

Lemma 4.5.7. Let f be as in 4.2 and |α| ≤ 1. Then, we have

f̂(t)� 1+ | log(X)|
1+X

1
2 + |1− |α|2|

1
2X

, ∀t ∈ R,

f̂(t)� |t|−
3
2

(
1+min

{(
X

|t|

) 1
2

, |1− |α|2|−1
(
X

|t|

)− 3
2

})
, ∀|t| ≥ 1,

f̂(t)� C

T
|t|−

5
2

(
1+min

{(
X

|t|

) 3
2

, |1− |α|2|−2
(
X

|t|

)− 5
2

})
, ∀|t| ≥ 1.

Proof. We follow the proof of [DI83, Lemma 7.1] and [ST09, Prop. 5]. To prove the first

inequality we use the equation (A.12)

J2it(x)− J−2it(x) = −
4i

π
sinhπt

∫ ∞
0

cos(x cosh ξ) cos(2tξ)dξ.

We have by integration by parts∫ ∞
0

ei(±x cosh ξ)
f(x)

x
dx =

∫ ∞
0

eix(± cosh ξ+α) g(x)

x
dx

=
i

± cosh ξ + α

∫ ∞
0

eix(± cosh ξ+α)

(
g(x)

x

)′
dx

� min
{
1,X−1| cosh ξ ± α|−1

}
.

Hence, we find

f̂(t)�
∫ ∞
0

min
{
1,X−1| cosh ξ ± α|−1

}
dξ.

Thus, it suffices to bound the latter integral. It is bounded by

�
∫ 1

0
min

{
1,X−1(ξ2 + 1− |α|)−1

}
dξ +

∫ ∞
1

min
{
1,X−1e−ξ

}
dξ

�
∫ 1

0
min

{
1,X−1ξ−2,X−1ξ−1|1− |α||−

1
2 ,X−1|1− |α||−1

}
dξ

+

∫ ∞
1

min
{
1,X−1e−ξ

}
dξ.
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For X ≥ 1, this is bounded by

� min

{
X−

1
2 ,

1+ log(X)

|1− |α||
1
2X

,X−1|1− |α||−1
}
+X−1

and for X ≤ 1, it is bounded by

�ε 1+ | log(X)|.

The first inequality follows immediately.

The final two inequalities require some more work. Note that f̂(t) is even in t. Thus,

we can restrict ourselves to t ≥ 1. We make the substitution x→ 2tx in the definition of

f̂(t)

f̂(t) =
i

sinhπt

∫ ∞
0

J2it(2tx)− J−2it(2tx)
2

f(2tx)
dx

x

and use the uniform asymptotic expansion of the function Giν(νs) from [Dun90, pp.

1009-1010] with n = 0:

G2it(2tx) =
1

sinh(πt)

J2it(2tx)− J−2ti(2tx)
2i

=

(
1

πt

) 1
2

(1+ x2)−
1
4

[
sin(2tω(x)− π

4 )

− cos(2tω(x)− π
4 )

3(1+ x2)−
1
2 − 5(1+ x2)−

3
2

48t

+
1

2i

(
e−i

π
4 E1,1(2t,ω(x))− ei

π
4 E1,2(2t,ω(x))

)]
,

here

ω(x) =
√
1+ x2 + log

(
x

1+
√
1+ x2

)
and the error terms satisfy

E1,1(2t,ω(x)), E1,2(2t,ω(x))� |t|−
5
2 exp(O(|t|−1)).

Let us first deal with the error term. The contribution of the error term is bounded by

t−
5
2

∫ ∞
0
|f(2tx)|dx

x
� t−

5
2 � min

{
|t|−

3
2 ,
C

T
|t|−

5
2

}
.

For the remaining summands, we have to deal with integrals of the type

t−
1
2

∫ ∞
0

e±2itω(x)

(1+ x2)
1
4
+β
f(2tx)

dx

x
= t−

1
2

∫ ∞
0

e2it(±ω(x)+αx)

(1+ x2)
1
4
+β

g(2tx)
dx

x
,
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with β ∈ {0, 12 ,
3
2}. We rewrite the above as

1

2
t−

3
2

∫ ∞
0

(
e2it(±ω(x)+α)2t(±ω′(x) + α)

) g(2tx)

x(±ω′(x) + α)(1+ x2)
1
4
+β
dx. (4.37)

Since

ω′(x) =

√
1+ x2

x
> 1,

we have ω′(x)− |α| > 0. We apply Lemmata 4.5.1 and 4.5.2 with G(x) = g(2tx), F (x) =

e2it(±ω(x)+α)2t(±ω′(x) + α), and H(x) = [x(±ω′(x) + α)(1+ x2)
1
4
+β ]−1. Moreover, we

have

min
x�X

t

∣∣∣x(±ω′(x) + α)(1+ x2)
1
4
+β
∣∣∣� min

x�X
t

∣∣∣∣x( 1

x
√
1+ x2

+ 1− |α|
)
(1+ x2)

1
4

∣∣∣∣
� min

x�X
t

max
{
(1+ x2)−

1
4 , (1− |α|)x(1+ x2)

1
4

}
.

For x � 1, we see that the function is bounded below by 1. If x � 1, then the function

is bounded by below by

max

{(
X

t

)− 1
2

, |1− |α||
(
X

t

) 3
2

}

Therefore, the integral (4.37) is bounded by

t−
3
2

(
1+min

{(
X

t

) 1
2

, |1− |α||−1
(
X

t

)− 3
2

})
.

This yields the second inequality. For the third inequality, we proceed from (4.37) with

integration by parts. We have to deal with four new integrals

I1 = t−
5
2

∫ ∞
0

(
e2it(±ω(x)+α)2t(±ω′(x) + α)

) g(2tx)

x2(±ω′(x) + α)2(1+ x2)
1
4
+β
dx,

I2 = t−
5
2

∫ ∞
0

(
e2it(±ω(x)+α)2t(±ω′(x) + α)

) g(2tx)(±ω′′(x)x2)
x3(±ω′(x) + α)3(1+ x2)

1
4
+β
dx,

I3 = t−
5
2

∫ ∞
0

(
e2it(±ω(x)+α)2t(±ω′(x) + α)

) g(2tx)x2

x2(±ω′(x) + α)2(1+ x2)
5
4
+β
dx,

I4 = t−
5
2

∫ ∞
0

(
e2it(±ω(x)+α)2t(±ω′(x) + α)

) tx · g′(2tx)
x2(±ω′(x) + α)2(1+ x2)

1
4
+β
dx.
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Proceeding as before, we find

I1 � t−
5
2

(
1+min

{(
X

t

) 3
2

, |1− |α||−2
(
X

t

)− 5
2

})
,

I2 � t−
5
2

(
1+min

{(
X

t

) 3
2

, |1− |α||−3
(
X

t

)− 9
2

})
,

I3 � t−
5
2

(
1+min

{(
X

t

) 3
2

, |1− |α||−2
(
X

t

)− 5
2

})
,

I4 �
C

T
t−

5
2

(
1+min

{(
X

t

) 3
2

, |1− |α||−2
(
X

t

)− 5
2

})
.

We conclude the third inequality from this.

Lemma 4.5.8. Let f be as in (4.2) and |α| ≥ 1. Then, we have

f̂(t)� 1+ | log(X)|+ log(|α|)
1+X

1
2 + ||α|2 − 1|

1
2X

, ∀t ∈ R.

When |t| /∈
[

1
12 ||α|

2 − 1|
1
2X, 2||α|2 − 1|

1
2X
]

and |t| ≥ 1, we can do better and find in that case

f̂(t)� |t|−
3
2

(
1+min

{(
X

|t|

) 1
2

, ||α|2 − 1|−1
(
X

|t|

)− 3
2

})
,

f̂(t)� C

T
|t|−

5
2

(
1+min

{(
X

|t|

) 3
2

, ||α|2 − 1|−2
(
X

|t|

)− 5
2

})
.

Proof. We follow the proof of the previous lemma which leads us to estimate:

f̂(t)�
∫ ∞
0

min
{
1,X−1| cosh ξ − |α||−1

}
dξ.

Set cosh(φ) = |α| and note that we have eφ � |α| and log(|α|) ≤ φ ≤ 1+ log(|α|) for

|α| ≥ 1. This leads to

f̂(t)�
∫ ∞
0

min

{
1,X−1 sinh

(
ξ + φ

2

)−1
sinh

(
|ξ − φ|

2

)−1}
dξ.

Hence, it suffices to bound the latter integral. We split up the region of integration into

three parts I1, I2 and I3, where we restrict ourselves to |ξ−φ| ≥ 1, |ξ−φ| ≤ 1 ∧ ξ+φ ≥ 1

and |ξ − φ| ≤ 1 ∧ ξ + φ ≤ 1, respectively. For X ≥ 1, we have

I1 �
∫ ∞
0

min
{
1,X−1e−max{φ,ξ}

}
dξ

�
∫ φ

0

e−φ

X
dξ +

∫ ∞
φ

e−ξ

X
dξ

�ε
1+ log(|α|)
|α|X

,
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4.5 transform estimates

I2 �
∫ φ+1

max{0,φ−1}
min

{
1,X−1e−

ξ+φ
2 |ξ − φ|−1

}
dξ

�
∫ 1

−1
min

{
1,X−1e−φ|ψ|−1

}
dψ

�
∫ 1
|α|X

0
dψ+

∫ 1

1
|α|X

1

|α|Xψ
dψ

� 1+ log(|α|X)

|α|X
,

I3 �
∫ 1−φ

max{0,φ−1}
min

{
1,X−1|ξ2 − φ2|−1

}
dξ

�
∫ 1−2φ

max{−1,−φ}
min

{
1,X−1φ−1|ψ|−1,X−1|ψ|−2

}
dψ

� 1l[0,1](φ)min

{
1,

1+ log+(Xφ)

Xφ
,X−

1
2

}
� 1l[0,1](φ)min

{
1,

1+ log(X)

||α| − 1|
1
2X

,X−
1
2

}
.

For X ≤ 1, we have

I1 �
∫ ∞
0

min
{
1,X−1e−max{φ,ξ}

}
dξ

�
∫ max{φ,− log(X)}

0
min

{
1,
e−φ

X

}
dξ +

∫ ∞
max{φ,− log(X)}

e−ξ

X
dξ

�ε
1+ log(|α|) + | log(X)|

1+ |α|X
+

1

X
min

{
|α|−1,X

}
�ε

1+ log(|α|) + | log(X)|
1+ |α|X

,

I2 �
∫ φ+1

max{0,φ−1}
min

{
1,X−1e−

ξ+φ
2 |ξ − φ|−1

}
dξ

�
∫ 1

−1
min

{
1,X−1e−φ|ψ|−1

}
dψ

� min

{
1,

1+ log+(|α|X)

|α|X

}
,

I3 �
∫ 1−φ

max{0,φ−1}
min

{
1,X−1|ξ2 − φ2|−1

}
dξ

� 1l[0,1](φ).

This completes the case X ≤ 1.

For the second inequality, we proceed as in Lemma 4.5.7 and have to consider the

integral

t−
1
2

∫ ∞
0

e2it(±ω(x)+αx)

(1+ x2)
1
4
+β

g(2tx)
dx

x
.
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4.5 transform estimates

We would pick up a stationary phase at x0 = (α2− 1)−
1
2 . However, we have x ∈ [ 16

X
t ,

X
t ]

which does not intersect [ 12x0, 2x0]. Thus, we split up the integral into two parts I1

and I2 corresponding to the intervals [0, 12x0] and [2x0,∞[. Without loss of generality

let α ≥ 1. Assume first that X/t ≤ 1. In this case, we have by Lemmata 4.5.1 and

4.5.2 with the choice F (x) = (±ω′(x) + α)e2it(±ω(x)+α),G(x) = g(2tx), and H(x) =

[(1+ x2)
1
4
+β(
√
1+ x2 − αx)]−1,

I1 � t−
3
2

1

min
x∈[0, 1

2
x0]∩[ 16

X
t
,X
t
]

√
1+ x2 − αx

,

I2 � t−
3
2

1

min
x∈[2x0,∞[∩[ 1

6
X
t
,X
t
]
αx−

√
1+ x2

.

The allowed range for t leaves us with two cases, either x0 ≥ 2Xt or x0 ≤ 1
12
X
t . If x0 ≥ 2Xt ,

then the integral over I2 is 0, and√
1+ x2 − αx =

1− x2(α2 − 1)√
1+ x2 + αx

� 1, for x ≤ 1

2
x0 and x ≤ 1.

Thus, we get a total bound of t−
3
2 . Similarly, if x0 ≤ 1

12
X
t , then we have that the integral

over I1 is 0, and

αx−
√

1+ x2 =
x2(α2 − 1)− 1√
1+ x2 + αx

� 1

αx
, for x ≥ 2x0 and x ≤ 1.

Note that for x ≤ 1, we also have αx−
√
1+ x2 ≥ αx−

√
2 and hence

αx−
√

1+ x2 � αx+
1

αx
for x ≥ 2x0 and x ≤ 1.

This yields a total bound of t−
3
2 .

Assume now X
t ≥ 1. In this case, we have

I1 � t−
3
2

1

min
x∈[0, 1

2
x0]∩[ 16

X
t
,X
t
]

(√
1+ x2 − αx

)
x

1
2

,

I2 � t−
3
2

1

min
x∈[2x0,∞[∩[ 1

6
X
t
,X
t
]

(
αx−

√
1+ x2

)
x

1
2

.

If x0 ≥ 2Xt , then we have that the integral over I2 is 0, and(√
1+ x2 − αx

)
x

1
2 =

1− x2(α2 − 1)√
1+ x2 + αx

x
1
2 � x−

1
2 , for x ≤ 1

2
x0 and x ≥ 1

12
.

Thus, we get a total bound of t−
3
2

(
X
t

) 1
2 � t−

3
2 |α2 − 1|−1

(
X
t

)− 3
2 . Similarly, if x0 ≤ 1

12
X
t

we have that the integral over I1 is 0, and(
αx−

√
1+ x2

)
=
x2(α2 − 1)− 1√
1+ x2 + αx

≥ 3

8

x2(α2 − 1)

αx
� 1

αx
, for x ≥ 2x0 and x ≥ 1

6
.
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This yields a total bound of

t−
3
2 ·min

{
α

(
X

t

) 1
2

,
α

α2 − 1

(
X

t

)− 3
2

}
� t−

3
2

(
1+min

{(
X

t

) 1
2

,
1

α2 − 1

(
X

t

)− 3
2

})
,

since X
t ≥ 1. This proves the second inequality.

For the third inequality, we integrate once by parts. This leads us to consider the

integrals

I4 = t−
5
2

∫ ∞
0

(
e2it(±ω(x)+α)2t(±ω′(x) + α)

) g(2tx)

x2(±ω′(x) + α)2(1+ x2)
1
4
+β
dx,

I5 = t−
5
2

∫ ∞
0

(
e2it(±ω(x)+α)2t(±ω′(x) + α)

) g(2tx)(±ω′′(x)x2)
x3(±ω′(x) + α)3(1+ x2)

1
4
+β
dx,

I6 = t−
5
2

∫ ∞
0

(
e2it(±ω(x)+α)2t(±ω′(x) + α)

) g(2tx)x2

x2(±ω′(x) + α)2(1+ x2)
5
4
+β
dx,

I7 = t−
5
2

∫ ∞
0

(
e2it(±ω(x)+α)2t(±ω′(x) + α)

) tx · g′(2tx)
x2(±ω′(x) + α)2(1+ x2)

1
4
+β
dx.

By similar means as before, we have that

I4 � t−
5
2

(
1+min

{(
X

t

) 3
2

, ||α|2 − 1|−2
(
X

t

)− 5
2

})
,

I5 � t−
5
2

(
1+min

{(
X

t

) 3
2

, ||α|2 − 1|−3
(
X

t

)− 9
2

})
,

I6 � t−
5
2

(
1+min

{(
X

t

) 3
2

, ||α|2 − 1|−2
(
X

t

)− 5
2

})
,

I7 �
C

T
t−

5
2

(
1+min

{(
X

t

) 3
2

, ||α|2 − 1|−2
(
X

t

)− 5
2

})
.

We conclude the last inequality from this.

Lemma 4.5.9. Let f be as in (4.2). For 0 ≤ t ≤ 1
4 − δ, we have the following expansion

f̂(it) = −1

2

∫ X

X
2

Y2t(x)e
iαxdx

x
+Oε,δ

(
1+

T

C
X−2t−ε

)
.

Proof. We have

f̂(it) =
1

sin(2πt)

∫ ∞
0

J−2t(x)− J2t(x)
2

f(x)
dx

x

= −1

2

∫ ∞
0

[
J2t(x) cos(2πt)− J−2t(x)

sin(2πt)
+
J2t(x)− J2t(x) cos(2πt)

sin(2πt)

]
f(x)

dx

x

= −1

2

∫ ∞
0

[Y2t(x) + J2t(x) tan(πt)] f(x)
dx

x
.
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Now, we have∫ ∞
0

J2t(x) tan(πt)f(x)
dx

x
�
∫ ∞
0

min
{
x2t,x−

1
2

} g(x)
x

dx� 1

and (∫ X
2

2π
√
mn

(C+T )

+

∫ 4π
√
mn

(C−T )

X

)
Y2t(x)f(x)

dx

x
� T

C
sup
x∼X
|Y2t(x)|.

The following inequality will imply the result

|Y2t(x)| �ε


x−2t−ε, if x ≤ 1,

x−
1
2 , if x ≥ 1.

The range x ≥ 1 follows from (A.19) and for the range x ≤ 1, we make use of the

following integral representation (A.13):

Y2t(x) = −
2(x2 )

−2t
√
πΓ( 12 − 2t)

∫ ∞
1

cos(xy)

(y2 − 1)2t+
1
2

dy.

The integral from 1 to 1
x is bounded by∫ 2

1

1

(y− 1)1−2δ
dy+

∫ max{2, 1
x
}

2

1

(y2 − 1)
1
2

dy

=
1

2δ
(y− 1)2δ

∣∣∣∣∣
2

y=1

+ log
(√

y2 − 1+ y
) ∣∣∣∣∣

max{2, 1
x
}

y=2

�ε,δ x
−ε

and the remaining integral is bounded by O(1) by Lemma 4.5.1 with F (y) = cos(xy)

and G(y) = (y2 − 1)2t+
1
2 .
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5
T H E C I R C L E M E T H O D

5.1 introduction

As already mentioned in the introduction of this thesis, the Hardy–Littlewood circle

method finds its origin in a paper by Hardy and Ramanujan [HR18] on the asymptotic

behaviour of the size of partition numbers. The idea that led them to success was the

following. Suppose we wish to understand the elements of a sequence (an)n∈N0 and we

understand to some degree its generating series

F (z) =
∞∑
n=0

anz
n.

Say, it has radius of convergence R > 0. Then, we may write the element an as the

contour integral

an =

∫
|z|=r

F (z)z−n−1dz,

for any 0 < r < R. The Hardy–Littlewood philosophy now dictates that F (z) is gen-

erically small as |z| → R, unless z is close to R · e(aq ) with a
q ∈ Q, in which case we

may hope for an asymptotic expansion around the point R · e(aq ). The former is known

as the minor arcs and the latter as major arcs. If all of the above is satisfied in a suffi-

ciently quantitative manner, then one may derive an asymptotic expansion for an with a

dominant contribution coming from the behaviour of F (z) near R · e(aq ) with q not too

large.

Contributions from Vinogradov [Vin28] simplified the matter significantly by showing

that often one does not require the full generating series, but a partial sum suffices.

By doing so, all issues that came from taking the limit r → R suddenly disappeared.

Another large contribution by Vinogradov [Vin35b, Vin35a] was the introduction of his

mean value. It is known as Vinogradov’s mean value and it constitutes a powerful tool

to deal with exponential sums. In particular, it used to prove the best known zero-free

region of the Riemann zeta function - more on this in Section 5.3.
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5.2 smooth delta symbol circle method

Nowadays, the circle method takes on various shapes and has been applied in all

sorts of situations. Kloosterman [Klo26] developed a minor-arc-free circle method based

on a Farey dissection of the unit interval. Rademacher [Rad43] used Ford circles to

extend the Hardy–Ramanujan argument for the asymptotic behaviour of the partition

function to a complete expansion as a series. Jutila [Jut99] developed a circle method

with overlapping intervals and much freedom, which came at the cost of having an

L2-error-term. Duke–Friedlander–Iwaniec [DFI93] developed the smooth delta symbol

circle method and applied it to automorphic forms. Heath-Brown [HB96] then further

applied it to Diophantine equations. Recently, Munshi [Mun15] had success with an

automorphic representation of the delta symbol (see Theorem 3.7.6).

5.2 smooth delta symbol circle method

The smooth delta symbol circle method is essentially due to Duke–Friedlander–Iwaniec

[DFI93], but is based on Kloosterman’s version of the circle method [Klo26]. The version

we present here was worked out by Heath-Brown [HB96] in order find integer solutions

to Diophantine equations.

We start with a positive smooth bump function ω0 that is supported on [ 12 , 1] and

satisfies ∫ ∞
−∞

ω0(x)dx = 1.

Let Q > 1 be any real number and observe that if n ∈ Z is a non-zero integer, then

q 7→ n
q is an involution on the set of divisors of n. Hence, we find

∑
q|n

(
ω0

(
q

Q

)
− ω0

(
n

qQ

))
= 0.

However, if n = 0 we find

∑
q|0

(
ω0

(
q

Q

)
− ω0(0)

)
=
∑
q∈Z

ω0

(
q

Q

)
=
∑
q∈Z

∫ ∞
−∞

ω0

(
x

Q

)
e(−qx)dx, (5.1)

by Poisson summation. The latter has a dominant term of Q for q = 0 and the remain-

ing terms are OA(Q(|q|Q)−A) for any A ≥ 0, which follows from integration by parts.
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5.2 smooth delta symbol circle method

Therefore, we may write (5.1) as c−1Q Q with cQ = 1+OA(Q−A). In conclusion, we have

shown that

cQ
Q

∑
q|n

(
ω0

(
q

Q

)
− ω0

(
n

qQ

))
= δ(n) =


1, n = 0,

0, n 6= 0.

(5.2)

We may restrict ourselves to positive divisors q if we replace n by |n| in ω0(
n
qQ ). By

further resolving the divisibility q|n by means of additive characters, we find that (5.2)

is equal to

cQ
Q

∞∑
q=1

1

q

∑
amod(q)

e(anq )

(
ω0

(
q

Q

)
− ω0

(
n

qQ

))
=
cQ
Q2

∞∑
q=1

∑′

amod(q)

e(anq )h

(
q

Q
,
n

Q2

)
, (5.3)

where

h(x, y) =
∞∑
j=1

1

xj

(
ω0(xj)− ω0

(
|y|
xj

))
. (5.4)

One can now apply this to a weighted counting of solutions to a Diophantine equation

F (x) = 0:

N(F ,ω) =
∑
x∈Zn

F (x)=0

ω(x),

where ω is a compactly supported bounded function.

Theorem 5.2.1. We have

N(F ,ω) =
cQ
Q2

∞∑
q=1

∑′

amod(q)

∑
x∈Zn

ω(x)e
(
aF (x)
q

)
h

(
q

Q
,
F (x)

Q2

)
,

for any Q > 1. Moreover, if ω is smooth and compactly supported, then

N(F ,ω) =
cQ
Q2

∑
c∈Zn

∞∑
q=1

1

qn
Sq(c)Iq(c),

where

Sq(c) =
∑′

amod(q)

∑
b∈Zn/qZn

e

(
aF (b) + c · b

q

)
,

Iq(c) =

∫
Rn
ω(x)h

(
q

Q
,
F (x)

Q2

)
e(−c·xq )dx.

Proof. This is [HB96, Thm 2] or it simply follows from the previous discussion and

Poisson summation applied to all arithmetic progressions x ≡ bmod(q).

The function h approximates a delta function in the following sense.
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5.3 effective vinogradov mean value theorem

Lemma 5.2.2. Let f ∈ L1(R) be a smooth function. Then, for x� 1 and M ∈N0, we have∫ ∞
−∞

f(y)h(x, y)dy = f(0) +OM
(
xM−1‖f‖M ,1

)
,

where ‖f‖M ,1 denotes the Sobolev norm on L1(R) of order M .

Proof. This is [IK04, Cor. 20.19].

The following estimates on the function h come in handy as well.

Lemma 5.2.3. The function h(x, y) vanishes, unless x ≤ max{1, 2|y|}, in which case we have

dm+n

dxmdyn
h(x, y)�N ,m,n x

−1−m−n

(
xN +min

{
1,

(
x

|y|

)N})
,

for m,n,N ∈N0. The term xN on the right-hand side may be omitted for n 6= 0.

Proof. This is [HB96, Lem. 4,5]

5.3 effective vinogradov mean value theorem

This section is directly taken from our previous work [Ste16].

Let k and s denote two natural numbers. Vinogradov’s mean value theorem is a bound

on the integer solutions of the Diophantine equation

s∑
i=1

xji =
s∑
i=1

yji , (j = 1, . . . , k), (5.5)

with 0 < x,y ≤ X . By orthogonality, the number of solutions is equal to

Js,k(X) =

∫
[0,1[k

|f(X/2,X,α)|2sdα,

where we define

f(N ,M ,α) =
∑

N− 1
2
M<x≤N+ 1

2
M

e(α ·ϑ(x))

for real N ,M with M ≥ 1 and ϑ(x) = (x,x2, . . . ,xk). Lower bounds for Js,k(X) are well

known and easily proved (see for example [Vau97]). They admit the form

Js,k(X)�s,k max{Xs,X2s− 1
2
k(k+1)}. (5.6)

In a recent breakthrough, Bourgain, Demeter, and Guth [BDG15] have shown that (5.6)

is sharp up to a factor Xε; i.e. they have proven the inequality

Js,k(X)�s,k,ε max{Xs+ε,X2s− 1
2
k(k+1)+ε} (5.7)
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5.3 effective vinogradov mean value theorem

to hold for all s, k ∈ N and ε > 0. An application of the circle method further shows

that one has an asymptotic of the shape

Js,k(X) ∼ Cs,kX2s− 1
2
k(k+1) (5.8)

for all s > 1
2k(k + 1). Before this latest breakthrough, there has been a long history

of improvements towards (5.7) and (5.8). Following Vinogradov [Vin35a], who gave an

estimate of the shape

Js,k(X)�s,k X
2s− 1

2
k(k+1)+ηs,k ,

there have been improvements in the argument by Linnik [Lin43], Karatsuba [Kar73]

and Stechkin [Ste75] leading to an error in the exponent of only ηs,k = 1
2k

2(1− 1/k)bs/kc.

This allows one to get the asymptotic (5.8) as soon as s ≥ 3k2(log k + O(log log k)).

Wooley [Woo92] was further able to decrease the exponent to roughly ηs,k = k2e−2s/k2

by using his efficient differencing method, an extension of Linnik’s argument, which

allowed him to show that the asymptotic (5.8) holds for s ≥ k2(log k + O(log log k)).

Later, Wooley [Woo12] developed a powerful new argument, called efficient congruen-

cing, which enabled him to prove (5.7) for s ≥ k(k+ 1). Note that this is just a factor of

2 off the critical case s = 1
2k(k+ 1), from which all other cases would follow. There has

followed a series of papers in which Wooley has refined his method, leading to proofs

of (5.7) for s ≤ 1
2k(k + 1)− 1

3k +O(k
2
3 ) [Woo17a] and a full proof when k = 3 [Woo16].

The history of the main conjecture (5.7) ends with Bourgain, Demeter, and Guth’s full

proof using decoupling theory from harmonic analysis.

Vinogradov’s mean value theorem has a broad range of applications. For example,

it can be used to get strong bounds on exponential sums (see Chapter 8.5 in [IK04]).

These strong bounds can then be used to get zero-free regions of the Riemann zeta

function, something which has been made explicit by Ford [For02]. Furthermore, they

have been used implicitly by Halász and Turán [HT69] to get zero-density estimates

for the Riemann zeta function. Other applications of Vinogradov’s mean value theorem

include estimates for short mixed character sums, such as found in work of Heath-

Brown and Pierce [HBP15] and Kerr [Ker14], as well as contributions to restriction theory

worked out by Wooley [Woo17b] and Bourgain, Demeter and Guth [BDG15]. In all of

these applications it is desirable to have an effective version of Vinogradov’s mean value

theorem.
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5.3 effective vinogradov mean value theorem

Effective versions have been given by Hua [Hua49], whose argument is based on

Vinogradov’s original method, Stechkin [Ste75] as well as by Arkhipov, Chubarikov and

Karatsuba [ACK04], whose work is based on Linnik’s p-adic argument, and Ford [For02],

whose argument is based on Wooley’s efficient differencing method. In this section, we

prove effective bounds using Wooley’s efficient congruencing method combined with

the older arguments of Vinogradov and Hua.

Let us give an overview of the heart of Vinogradov’s and Hua’s argument. If we have

two tuples x,x′ such that ‖x−x′‖∞ ≤ S, then we have∣∣∣∣∣
k∑
i=1

(xji − x
′j
i )

∣∣∣∣∣ ≤ jk · SXj−1. (5.9)

The question of whether this can be reversed arises naturally and the answer is in the

affirmative, although it depends on how well-spaced x is; i.e. how large mini 6=j |xi − xj |

is (see Lemma 5.3.5). In his paper, Hua [Hua49] uses this reversibility by writing (5.5) as

k∑
i=1

(xji − x
′j
i ) =

s−k∑
i=1

(yji − y
′j
i ). (5.10)

By splitting up the y and y′ into X
2(s−k)
k intervals of length at most X1− 1

k and using the

integer translation invariance in combination with Hölder’s inequality, one can force

‖y‖∞, ‖y′‖∞ ≤ X1− 1
k in (5.10). Now, the right-hand side of (5.10) is small. It is in fact

at most (s− k)Xj−1X1− j
k . By splitting up the right-hand side further into (s− k)X1− j

k

intervals of size Xj−1 and using Cauchy–Schwarz, one is able to reduce to (5.9) with S =

1. Fixing the x′ arbitrarily allows now only Os,k(1) choices for the x as xi = x′i+Os,k(1)

and the choices for y and y′ can be bounded by Js−k,k(X1− 1
k ). This gives

Js,k(X)�s,k log(2X)2 ·X
2(s−k)
k ·

k∏
j=1

X1− j
k ·Xk · Js−k,k(X1− 1

k ),

where the log(2X)2 is coming from a dyadic argument ensuring that mini 6=j |xi − xj |

is not too small. By iterating this inequality l-times, Hua proved the following upper

bound for s ≥ 1
4k(k+ 1) + lk:

Js,k(X) ≤ (7s)4sl log(X)2lX2s− 1
2
k(k+1)+ 1

2
k(k+1)(1− 1

k
)l ∀X ≥ 2.

The same kind of argument also works if we only force ‖y‖∞, ‖y′‖∞ ≤ X1−θ, with

θ tiny. In this case, one concludes xi = x′i +Os,k(X
1−kθ) and one can put the x’s into

a box of size X1−kθ. Now, Wooley’s efficient machinery lets us interchange the roles
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of x and y and thus allows us to play the same game again with kθ instead of θ. In

every iteration, there is a slight gain in the exponent, depending on s, k, θ and ηs,k. In

the simplest form of Wooley’s efficient machinery, these gains stack up to overcome the

defect of the method as soon as s ≥ k(k+ 1), leading to a slight decrease of ηs,k as seen

in the following theorem.

Theorem 5.3.1. Let s, k ∈N with k ≥ 3 and 2 log(k) ≥ λ = s−k
k2
≥ 1. Assume that

Js,k(X) ≤ C log2(2X)δX2s− 1
2
k(k+1)+η ∀X ≥ 1,

for some 0 ≤ δ and 0 < η ≤ 1
2k(k+ 1). Further, let

D ≥ max

1,
log
(
k2

2η
λ−1
λ2

+ 1
)

log(λ)


be an integer and set θ = k−(D+1). Then, we have

Js,k(X) ≤C · 2
3
2
k2+ 11

2
k+1k

1
2
k2+ 25

6
k−2 ·M0

· log2(2X)δ+
2λk−1
λk−1 X2s− 1

2
k(k+1)+η ·X−ηθ

s−2k
s−k , ∀X ≥ 1,

whereM0 is defined as follows

M0 = max
γ∈{1, s−k

s−2k
}

{(
2

1
2
k2+ 31

6
k+7e

3
4
k2− 1

2
kk−

1
2
k2+ 25

3
k
)γ

, 2−
1
2
k2− 11

6
k

}

=



(
2

1
2
k2+ 31

6
k+7e

3
4
k2− 1

2
kk−

1
2
k2+ 25

3
k
) s−k
s−2k

, k ≤ 43,

2
1
2
k2+ 31

6
k+7e

3
4
k2− 1

2
kk−

1
2
k2+ 25

3
k, 44 ≤ k ≤ 62,

2−
1
2
k2− 11

6
k, k ≥ 63.

(5.11)

By iterating this theorem and combining it with the Hardy–Littlewood method, one

may conclude the following result, which is a special case of Theorem 5.3.22.

Theorem 5.3.2. Let k ≥ 3, s ≥ 5
2k

2 + k. Furthermore, let X ≥ s10. Then, we have the estimate

Js,k(X) ≤ CX2s− 1
2
k(k+1),

where C is the maximum of 4k30k3 and[
2

3
2
k2+ 11

2
k+1+Dk

1
2
k2+ 25

6
k−2+DM0

] 33
10
kD+1

· 4(2k)2k3+11k2 ,
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where

D =

⌈
2 log(k) + log(log(k)) + 4.2

log(2)

⌉
andM0 as in (5.11).

Although Wooley’s method is in principle effective and can be made effective in a sim-

ilar fashion as we do here, it has a rather big disadvantage. Namely, the conditioning

and the congruencing step get into each others way. This may be seen best in [Woo12,

Section 7], where the sequence {bn}n follows the iteration scheme bn+1 = kbn+ hn and a

lot of effort is put into showing that this sequence doesn’t grow too fast. A consequence

of this is that the parameter θ has to be smaller by a factor of 2, which may be further

improved down to 4
3 . However, this decrease in θ affects the speed of convergence of ηs,k

drastically (see Theorem 5.3.1). By using the techniques of Vinogradov and Hua instead,

gains us an independence of the conditioning/well-spacing and the congruencing/box-

ing step, which leaves us with a simple iteration scheme bn+1 = kbn. It is this simple

iteration scheme which makes the rather basic outline of the proof in Section 5.3.2 clean.

Clean in the sense that simply specifying the involved parameters as well as analysing

the dependence in g, which simply boils down to an exponent being non-positive, would

yield a complete proof. This is not the case when working with congruences. Another

novelty of the simple iteration scheme is that it allows the introduction of the parameter

λ = s−k
k2

. This parameter has a large impact on the number of iterations needed in order

to decrease the exponent, which has a welcoming effect on the constant. From Theorem

5.3.1, it can easily be seen that choosing λ > 1 rather than λ = 1 decreases the number of

iterations D from polynomially in k down to logarithmically in k. This has the effect of

reducing the constant from kk
O(k2/ε)

down to kk
O(log(k2/ε)/ log(λ))

if one wishes to achieve an

exponent ηs,k ≤ ε. This explains why we chose to present Theorem 5.3.2 with a slightly

larger s than the method would allow.

In view of further improvements in efficient congruencing and the recent breakthrough

by Bourgain, Demeter, and Guth, one might ask to which extent they can be made effect-

ive and how such a result would compare to Theorem 5.3.2. Let us first remark that the

proof of Bourgain, Demeter, and Guth follows a similar iteration scheme as multigrade

efficient congruencing. One iteration of theirs shows that the quantity Vp,n(δ) in their

paper, which may be compared to Xη in our setting, can be replaced by

δ−
u
2 Vp,n(δ)

1−uW ,
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whereas efficient congruencing/boxing shows that Xη can be replaced by

Xη(X∆θ +X−ηθ
s−2k
s−k )

(see Proposition 5.3.19). Now, their parameter u can be compared with the parameter θ

in efficient congruencing in the sense that they have to look at the tiniest scales as well in

order for their iteration scheme to go through. Furthermore, the factor δ−
u
2 can be seen

as the defect of the method, which one also gets in efficient congruencing (compare to

the positive term in ∆). Now, the tinier Vp,n(δ) gets the larger W has to be and henceforth

more iterations are needed to further decrease Vp,n(δ). This is the same kind of problem

that also arises in effective versions of efficient congruencing/boxing.

Now, we should remark that in most applications of Vinogradov’s mean value the-

orem it is important that s is above the critical case; i.e. s ≥ 1
2k(k + 1). Later versions

of efficient congruencing as well as the proof of the main conjecture by Bourgain, De-

meter, and Guth attack the problem from below, which corresponds to the case λ = 1.

Therefore, constants of the size kk
O(k2/ε)

should be expected. But, let us suppose now

that Bourgain, Demeter, and Guth’s proof could be adapted to an attack from above.

This would then lead to a doubling of the parameter λ, which would speed up the rate

of convergence significantly and thus decrease the implied constant.

It is natural to ask if and to what extent Theorem 5.3.2 leads to improvements of

the explicit zero-free region of the Riemann zeta function, as in Ford’s work [For02].

Unfortunately, the answer is that there are no direct improvements. The reason for this

is the growth of the constant. The dominating term is roughly kk
O(log(k)/ log(λ))

, which is

a lot bigger compared to the term kO(k3) appearing in Ford’s work. When it comes to

its application, one only takes the k4-th root and thus the constant is too large. There

may however be a way around this. Similar to the argument in [Woo12, Section 2], one

may choose D = 1 and replace Proposition 5.3.16 with one that bounds the quantity

at hand in terms of Js−k(X1− 1
k ). This leads to an error of the exponent morally of the

size ηs,k = k2e−
1
2
(s/k2)2 , whilst keeping the constant on the scale kO(k4). Then, taking

the s2-th root, with s = k2 log(k)
1
2 rather than s = k2, leads to a zero-free region, which

is asymptotically slightly worse than Ford’s explicit zero-free region. It is therefore not

clear if such an endeavour would be fruitful and lead to an improved zero-free region

of the Riemann zeta function in an intermediate range.
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5.3.1 Notation

As already introduced, we let

f(N ,M ,α) =
∑

N− 1
2
M<x≤N+ 1

2
M

e(α ·ϑ(x))

for real N ,M with M ≥ 1, where ϑ(x) = (x,x2, . . . ,xk). Furthermore, we call an interval

of the shape ]a, b] =]a1, b1]× · · ·×]an, bn] a box. By Bn(N ,M ), we denote the box

Bn(N ,M ) =
n∏
i=1

]
Ni −

1

2
Mi,Ni +

1

2
Mi

]
.

Furthermore, we allow ourselves to abuse some notation here: any numbers, say N ,M

in the argument of Bn(N ,M ) are to be regarded as n-dimensional vectors with entry

N , respectively M , in each coordinate. To a box Bn(N ,M ), we associate the product

Fn(N ,M ,α) =
n∏
i=1

f(Ni,Mi,α). (5.12)

We say a box Bn(N ,M ) is R-well-spaced if |Ni−Nj | ≥ 2R for all i 6= j and 1 ≤Mi ≤ R

for i = 1, . . . ,n. In this case, we adjust the definition (5.12) to

FnR(N ,M ,α) =
n∏
i=1

f(Ni,Mi,α)

to further indicate that the box Bn(N ,M ) is R-well-spaced. We say a box Bn(N ,M )

contains a (k-dimensional) R-well-spaced box if there is a set of k integers 1 ≤ l1 < · · · <

lk ≤ n such that
∏k
i=1B

1(Nli ,Mli) is an R-well-spaced box. For such a box, we are able

to split up the product (5.12) into

Fn(N ,M ,α) = FkR(N
′,M ′,α)Fn−k(N ′′,M ′′,α).

The choice of N ′,M ′,N ′′,M ′′ may of course not be unique.

Other than the initial Diophantine equation (5.5), we need to consider two more re-

lated systems of equations. The first system of equations is

k∑
i=1

(xji − y
j
i ) +

s−k∑
i=1

(uji − v
j
i ) = 0, (j = 1, . . . , k),

where x,y are tuples inside an R-well-spaced box Bk(N ,M) with M ≥ 1, u,v are

tuples inside a box Bs−k(ξ,P ) for some ξ ∈ [−1
2 ,

1
2 ] and P ≥ 1, and furthermore
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Bk(N ,M)×Bs−k(ξ,P ) ⊆]Q,Q+X ]s for some Q. Note that this forces −X ≤ Q ≤ 0 as

0 ∈ Bs−k(ξ,P ). The corresponding counting integral is

IR(N ,M , ξ,P ) =

∫
[0,1[k

|FkR(N ,M ,α)|2|f(ξ,P ,α)|2(s−k)dα.

Let IR(M ,P ) denote the maximal number of solutions to the system of equations that

occurs for any admissible ξ and N given R,M ,P . Note that IR(M ,P ) is certainly

bounded by Js,k(X + 1) (by considering any solution (x,u), (y,v) ∈]Q,Q+X ]s and

using Lemma 5.3.3) and is an integer, therefore well-defined.

The second supplementary system of equations is
k∑
i=1

(xji − y
j
i ) +

k∑
i=1

(wji − z
j
i ) +

m−k∑
i=1

(uji − v
j
i ) +

s−m−k∑
i=1

(pji − q
j
i ) = 0, (j = 1, . . . , k),

where x,y are tuples inside an R-well-spaced box Bk(N ,M) with M ≥ 1, w, z are

tuples inside an R′-well-spaced box Bk(N ′,L) with L ≥ 1, u,v are tuples inside a box

Bm−k(N ′′,L), p, q are tuples inside a box Bs−m−k(ξ,P ) for some ξ ∈ [−1
2 ,

1
2 ] and P ≥ 1,

and furthermore Bk(N ′,L) ⊆ Bk(ξ,P ), Bm−k(N ′′,L) ⊆ Bm−k(ξ,P ) and Bk(N ,M)×

Bs−k(ξ,P ) ⊆]Q,Q+X ]s for some Q. The corresponding counting integral is

KR,R′;m(N ,M ,N ′,L,N ′′, ξ,P )

=

∫
[0,1[k

|FkR(N ,M ,α)|2|FkR′(N ′,L,α)|2|f(N ′′,L,α)|2(m−k)|f(ξ,P ,α)|2(s−m−k)dα.

Let KR,R′;m(M ,P ,L) denote the maximal number of solutions to the system of equa-

tions that occurs for any admissible ξ,N ,N ′,N ′′ given R,R′,m,M ,P ,L. Again, this is

well-defined.

As only very special types of these two integrals appear, we will shorten our notation

to
Iga,b(X) = I2−gX1−aθ(2−gX1−aθ,X1−bθ),

Kg,h
a,b;m(X) = K2−gX1−aθ,2−hX1−bθ;m(2

−gX1−aθ,X1−bθ, 2−hX1−bθ),

where θ is a sufficiently small parameter, taking on the role already mentioned in the

introduction. The parameters g and h indicate the well-spacedness of our boxes and are

very important for the argument given in the introduction.

The process of getting better and better upper bounds is of iterative nature, where in

each step we decrease the exponent by a tiny bit. In every iteration, we will make use of

previous upper bounds. Thus, we assume we have a bound of the shape

Js,k(X) ≤ C log2(2X)δX2s− 1
2
k(k+1)+η, (5.13)
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with 0 ≤ δ and 0 < η ≤ 1
2k(k + 1). Here, log2 denotes the logarithm to the base 2. Note

that we certainly have such a bound with (C, δ, η) = (1, 0, 12k(k+ 1)).

To simplify calculations, we introduce the following normalisations:

JJs,k(X)K =
Js,k(X)

C log2(2X)δX2s− 1
2
k(k+1)+η

,

JIga,b(X)K =
Iga,b(X)

C log2(2X)δ(X1−aθ)2k−
1
2
k(k+1)(X1−bθ)2(s−k)Xη

,

JKg,h
a,b;m(X)K =

Kg,h
a,b;m(X)

C log2(2X)δ(X1−aθ)2k−
1
2
k(k+1)(X1−bθ)2(s−k)Xη

.

(5.14)

Our assumed upper bound (5.13) is now reduced to the inequality JJs,k(X)K ≤ 1, which

we will make use of rather frequently. To further simplify our proof, we adopt the rather

unusual convention that
W∑

denotes a sum of at most W terms. In each term, the variables

N ,N ′,N ′′,N ′′′,N ′′′′,N ,N ′,Ni,N
′
i ,U ,U ′,V , ξ

may vary. Though, they are still required to satisfy certain properties coming from the

context. These properties include, but are not limited to, ones such as ‘being R-well-

spaced’ and ‘being contained in a box of the shape ]Q,Q+X ]s’, and should always be

clear from the context.

5.3.2 Outline of the Proof

To give the reader a better understanding of the whole argument, we give an overview

of what is going on. Recall our assumption (5.13) and our normalisation (5.14). We have

JJs,k(X)K ≤ 1

and if η > 0 we would like to show

JJs,k(X)K�s,k X
−∆

for some ∆ > 0 as large as possible. In a first step, we need to ensure that our variables

are well-spaced. Secondly, we need to start the extraction, by making some variables

small. Proposition 5.3.12 does both of these things and essentially gives

JJs,k(X)K�s,k,g log2(2X)JIg0,1(X)K. (5.15)
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Before extracting information, it is better to pre-well-space some variables for further

extraction. This is done by Proposition 5.3.13, giving essentially

JIga,b(X)K�s,k,g,h,m log2(2X)JKg,h
a,b;m(X)K. (5.16)

Now that everything is prepared, we can extract some information whilst gaining some-

thing in the exponent. This is done by the argument given in the introduction (see

Proposition 5.3.15 for details). This gives

JKg,h
a,b;m(X)K�s,k,g,h,m X−η

s−2k
s−k bθJIhb,kb(X)K

k
s−k . (5.17)

In the end, we don’t need to pre-well-space any more as it will be the last extraction.

After the extraction, we bound the number of solutions trivially in terms of Js,k. This is

done in Proposition 5.3.16, giving the inequality

JIga,b(X)K�s,k,g X
−η s+k

2−k
s

bθX
k2(k2−1)

2s
bθ. (5.18)

The idea is now to iterate through (5.16) and (5.17) as much as possible having fixed

θ. By doing so, we see that the h cropping up in (5.16) will become the new g after

(5.17) in the next iteration of (5.16). Thus, we’ll get a sequence g on which the im-

plied constants will depend. Moreover, we see that the pair (a, b) goes through the

sequence (0, 1), (1, k), (k, k2), . . . , (kD−1, kD). For simplicity, let us denote this sequence

(a0, b0), . . . , (aD, bD). It turns out that to go through this many iterations one needs

θ ≤ k−(D+1). So, let us fix θ = k−(D+1) and write

JJs,k(X)K =
JJs,k(X)K
JIg00,1(X)K

D−1∏
n=0

 JIgnan,bn(X)K

JIgn+1

an+1,bn+1
(X)K

k
s−k

( k
s−k )

n

JIgDaD,bD
(X)K(

k
s−k )

D

.

By inserting the equations (5.15),(5.16),(5.17), and (5.18), we get

JJs,k(X)K�s,k,g,m log2(2X)
D−1∏
n=0

(
log2(2X)X−η

s−2k
s−k k

nθ
)( k

s−k )
n

·
(
X−η

s+k2−k
s

kDθX
k2(k2−1)

2s
kDθ

)( k
s−k )

D

�s,k,g,m log2(2X)
2s−3k
s−2k

(
Xθ
) k2(k2−1)

2s
( k

2

s−k )
D−η s−2k

s−k
∑D
n=0

(
k2

s−k

)n
,

where we have made use of the trivial inequality s+k2−k
s ≥ s−2k

s−k to make things simpler.

Furthermore, we have extended the product to infinity to bound the exponent of the

logarithm. It is now evident that if s ≥ k2 + k and η > 0 we are able to find a sufficiently

large D, such that the exponent is negative. This is of course only true if we can find a

suitable choice of g and m.
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5.3.3 Preliminaries

In this section, we collect all lemmata which are needed to prove the core propositions

in the next section. The first lemma is essential in almost every step and we will refer to

it as the integer translation invariance.

Lemma 5.3.3 (Integer translation invariance). For l ∈ Z, we have∫
[0,1[k

Fs(N ,M ,α)Fs(N ′,M ′,−α)dα =

∫
[0,1[k

Fs(N + l,M ,α)Fs(N ′ + l,M ′,−α)dα.

Proof. The first integral is counting the number of integer solutions to

s∑
i=1

xji =
s∑
i=1

yji (j = 1, . . . , k), (5.19)

with x ∈ Bs(N ,M ) and y ∈ Bs(N ′,M ′). By the Binomial Theorem, the system of

equations (5.19) is equivalent to

s∑
i=1

(xi + l)j =
s∑
i=1

(yi + l)j (j = 1, . . . , k),

with x+ l ∈ Bs(N + l,M ) and y + l ∈ Bs(N ′ + l,M ′). This is exactly the correspond-

ing Diophantine equation of the second integral and we have shown that translating by

l gives a one to one correspondence between the two. Thus, the number of solutions are

equal.

Lemma 5.3.4. For x ≥ 1, we have

√
2πxx+

1
2 e−x ≤ Γ(x+ 1) ≤ exx+

1
2 e−x.

Proof. Despite there being a vast literature on inequalities involving the Gamma func-

tion, the author was unable to find a reference for the above inequality, therefore we

provide a proof. Consider the function f(x) = log(Γ(x+ 1))− (x+ 1
2 ) log(x) + x. From

[Mer96], we know that

f ′′(x) =
∞∑
k=1

1

(k+ x)2
− 1

x
+

1

2x2
>

1

6x3
− 1

30x5
> 0, (x ≥ 1).

100



5.3 effective vinogradov mean value theorem

Thus, f(x) is convex for x ≥ 1. Moreover, we have f ′(1) = 1
2 − γ < 0, where γ is the

Euler–Mascheroni constant, and

lim
x→∞

f(x) =
1

2
log(2π)

from Stirling’s approximation. Since f(x) is convex, it follows that

lim
x→∞

f ′(x) = 0.

Again, from the convexity, it follows that f ′(x) < 0 for x ≥ 1. Hence, the maximum is

attained at x = 1 and the minimum at infinity. This gives the desired inequality.

Lemma 5.3.5. Let S > 0 be a real number. Further, let 1 ≤ u ≤ u+ r− 1 and let Br(N ,M)

be an R-well-spaced box with N1 ≤ N2 ≤ · · · ≤ Nr. Suppose we are given two real r-tuples

x,y ∈ Br(N ,M) with −X < x,y ≤ X such that∣∣∣∣∣
r∑
i=1

xji −
r∑
i=1

yji

∣∣∣∣∣ ≤ SXj−1

holds for every j = u, . . . ,u+ r− 1. If u > 1 we furthermore need the assumption xjyj > 0 for

j = 1, . . . , r− 1 as well as |xr|, |yr| ≥ U > 0. Then, we have

|xr − yr| ≤
√
2
(e
r

)r (X
R

)r−1(X
U

)u−1
S.

Proof. We follow Hua’s argument quite closely (See [Hua65, Lemma 1, pp. 181-183] ).

We write
r∑
i=1

xji − y
j
i

xi − yi
· (xi − yi) = θjX

j−1, u ≤ j ≤ u+ r− 1,

where |θj | ≤ S for every u ≤ j ≤ u+ r− 1. We regard this as linear system of equations

in x1 − y1, . . . ,xr − yr. By Cramer’s rule, we have

∆(xr − yr)− ∆′ = 0, (5.20)

where

∆ =

∣∣∣∣∣∣∣∣∣∣
xu1−yu1
u(x1−y1) . . . xur−yur

u(xr−yr)
...

...

xu+r−1
1 −yu+r−1

1

(u+r−1)(x1−y1) . . . xu+r−1
r −yu+r−1

r

(u+r−1)(xr−yr)

∣∣∣∣∣∣∣∣∣∣
,

∆′ =

∣∣∣∣∣∣∣∣∣∣
xu1−yu1
u(x1−y1) . . .

xur−1−yur−1

u(xr−1−yr−1)
θu
u X

u−1

...
...

...

xu+r−1
1 −yu+r−1

1

(u+r−1)(x1−y1) . . .
xu+r−1
r−1 −yu+r−1

r−1

(u+r−1)(xr−1−yr−1)
θu+r−1

u+r−1X
u+r−2

∣∣∣∣∣∣∣∣∣∣
.
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5.3 effective vinogradov mean value theorem

Now, one can rewrite (5.20) as

1∏r
i=1(xi − yi)

∫ x1

y1

· · ·
∫ xr

yr

(
∆u,r(xr − yr)− ∆′u,r

)
dz1 . . . dzr = 0,

where

∆u,r =

∣∣∣∣∣∣∣∣∣∣
zu−11 . . . zu−1r

...
...

zu+r−21 . . . zu+r−2r

∣∣∣∣∣∣∣∣∣∣
,

∆′u,r =

∣∣∣∣∣∣∣∣∣∣
zu−11 . . . zu−1r−1

θu
u X

u−1

...
...

...

zu+r−21 . . . zu+r−2r−1
θu+r−1

u+r−1X
u+r−2

∣∣∣∣∣∣∣∣∣∣
.

In the case of xi = yi for some i, we can still make sense of the above argument in

terms of limits, which do exist. By the mean value theorem of integral calculus, there is

a choice of zi ∈ [xi, yi] for 1 ≤ i ≤ r such that

∆u,r(xr − yr)− ∆′u,r = 0.

By considering Vandermonde determinants, we find the identity

∆u,r = ∆u,r−1 · zu−1r

r−1∏
i=1

(zr − zi)

and moreover

∆u,r−1 6= 0

as the zi are pairwise different and in the case u > 1 we also have zi 6= 0 as 0 /∈ [xi, yi]

for i = 1, . . . , r− 1. Let us denote the elementary symmetric polynomial of degree r− i

in the variables z1, . . . , zr−1 by σr−i. These satisfy |σr−i| ≤
(
r−1
r−i

)
Xr−i as −X ≤ z ≤ X .

Therefore, in the expansion of ∆u,r, the absolute values of the coefficient of zu+i−2r are

equal to

|σr−i∆u,r−1| ≤
(
r− 1

r− i

)
Xr−i|∆u,r−1|.

By using the column minor of expansion of ∆′u,r and comparing it with the correspond-

ing one of ∆u,r, we find that

|∆′u,r| ≤ |∆u,r−1|
r∑
i=1

|σr−i||θu+i−1|
u+ i− 1

Xu+i−2 ≤ |∆u,r−1|SXu+r−2
r∑
i=1

1

u+ i− 1

(
r− 1

r− i

)
≤ 2r

r
· |∆u,r−1| · SXu+r−2,
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5.3 effective vinogradov mean value theorem

since
r∑
i=1

1

u+ i− 1

(
r− 1

r− i

)
≤

r∑
i=1

1

i

(
r− 1

r− i

)
=

r∑
i=1

1

r

(
r

r− i

)
≤ 2r

r
.

It follows that

|xr − yr| ≤
2r · SXu+r−2

r · |zr|u−1
∏r−1
i=1 (zr − zi)

≤ 2r

r ·
∏r−1
i=1 (2i− 1)

(
X

R

)r−1(X
U

)u−1
S,

where we have used |zr − zr−i| ≥ (2i− 1)R and |zr| ≥ U . Furthermore, we have for r ≥ 3

r−1∏
i=1

(2i− 1) =
Γ(2r− 1)

Γ(r) · 2r−1
=

2r−1√
π

Γ
(
r− 1

2

)

≥ 2r−
1
2

(
r− 3

2

)r−1
e

3
2
−r

≥ 2r−
1
2 rr−1e−r,

where we have made use of Lemma 5.3.4. It is easily verified, that this inequality also

holds for r = 2. Thus, we have

|xr − yr| ≤
√
2
(e
r

)r (X
R

)r−1(X
U

)u−1
S,

which holds also for r = 1 for trivial reasons.

Lemma 5.3.6. We have for r ≥ 1:

r∏
n=1

nn−1 ≥ r
1
2
r(r−2)e−

1
4
(r−1)(r−3).

Proof. The function (x− 1) log(x) is convex with a minimum of 0 at 1. Thus,

r∏
n=1

nn−1 = exp

(
r∑

n=1

(n− 1) log(n)

)

≥ exp

(∫ r

1
(x− 1) log(x)dx

)
= r

1
2
r(r−2)e−

1
4
(r−1)(r−3).

Lemma 5.3.7. Let 1 ≤ r ≤ k and furthermore let Br(N ,M) ⊆] −X,X ]r be an R-well-

spaced box with N1 ≤ N2 ≤ · · · ≤ Nr and M ,S ≥ 1. Assume as well R ≤ X/(2k). Let

ZW (Br(N ,M),U ) be the number of integer solutions x ∈ Br(N ,M) counted with multipli-

city W (x) ≥ 0 satisfying
r∑
i=1

xji ∈ Uj (j = 1, . . . , r), (5.21)
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5.3 effective vinogradov mean value theorem

where Uj is an interval of size at most SXj−1. Then, we have the bound

ZW (Br(N ,M),U ) ≤2
1
2
r(r+1)e

1
4
(3r+1)(r−1)r−

1
2
r(r−2) ·

(
X

R

) 1
2
r(r−1)

· ZW (Br(N ′,S′),U ),

for some sub-box Br(N ′,S′) of Br(N ,M) with 1 ≤ S′ ≤ S.

Remark 5.3.8. If S ≤M , then we are of course able to choose S′ ≡ S.

Proof. This will follow from the inequality

ZW (Br(N ,M),U ) ≤2
1
2
r(r+1)e

1
2
r(r+1)−1

r∏
n=1

n−(n−1) ·
(
X

R

) 1
2
r(r−1)

· ZW (Br(N ′,S′),U ),

(5.22)

which we shall prove inductively, and Lemma 5.3.6. The inequality (5.22) clearly holds

for r = 1. Thus, we may assume r ≥ 2 from now on. Without loss of generality, we may

assume W (x) = 0 if x does not satisfy (5.21). If there are no solutions, then (5.22) holds

trivially. Assume now there is a solution x. If we have another solution x′ we deduce∣∣∣∣∣
r∑
i=1

xji −
r∑
i=1

x′ji

∣∣∣∣∣ ≤ SXj−1

from (5.21). We can apply Lemma 5.3.5 with u = 1 to deduce that

|xr − x′r| ≤
√
2
(e
r

)r (X
R

)r−1
S.

Thus, we can find a sub-box of B1(Nr,M) of size at most

√
2
(e
r

)r (X
R

)r−1
S + 1 ≤ 2

(e
r

)r (X
R

)r−1
S

in which all the xr’s lie, as(
X

R

)r−1 (e
r

)r
≥ (2k)r−1

(e
r

)r
≥ 1

2r
(2e)r ≥ e

and
√
2+ e−1 ≤ 2. This box we may further split up into at most

2 · (r− 1)
(e
r

)r (X
R

)r−1
+ 1 ≤ 2r

(e
r

)r (X
R

)r−1
boxes of size at most S

r−1 . We now consider the interval S′r, say, which contributes the

most towards ZW (Br(N ,M),U ). By assumption, we still have at least a solution x.
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5.3 effective vinogradov mean value theorem

Consider now a second solution x′. Call y and y′ their restrictions to the first k − 1

coordinates. Note that we have∣∣∣∣∣
r−1∑
i=1

yji −
r−1∑
i=1

y′ji

∣∣∣∣∣ ≤
∣∣∣∣∣
r∑
i=1

xji −
r∑
i=1

x′ji

∣∣∣∣∣+ ∣∣xjr − x′jr ∣∣
≤ SXj−1 +

S

r− 1
· jXj−1

≤ 2SXj−1

for j = 1, . . . , r − 1. Thus, their j-th power sum is contained in some interval of length

at most 2SXj−1. Each of these intervals we split into half, yielding

ZW (Br(N ,M),U ) ≤ 2r
(e
r

)r (X
R

)r−1
·
2r−1∑
ZW ′(Br−1(N ,M),U ′),

where W ′(y) =
∑

xr∈S′r W ((y,xr)). We now take the maximum and apply the induction

hypothesis for r− 1 with W ′. The induction is now complete as

2r
(e
r

)r (X
R

)r−1
· 2r−1·2

1
2
r(r−1)e

1
2
r(r−1)−1

r−1∏
n=1

n−(n−1) ·
(
X

R

) 1
2
(r−1)(r−2)

=2
1
2
r(r+1)e

1
2
r(r+1)−1

r∏
n=1

n−(n−1) ·
(
X

R

) 1
2
r(r−1)

.

and

ZW ′(Br−1(N ′,S′),U ′) ≤ ZW (Br(N ′,S′),U ),

where Br(N ′,S′) = Br−1(N ′,S′)× S′r.

Lemma 5.3.9. Let k,m,D ∈ N with m ≥ k ≥ 2. The set of integers (d1, . . . , dm) with

0 ≤ di < D for i = 1, . . . ,m is said to contain a well-spaced (k-dimensional) sub-tuple if there

are k of them, say di1 , . . . , dik , satisfying

dij+1 − dij > 1 j = 1, . . . , k− 1.

The number of tuples not containing a well-spaced sub-tuple is bounded by

2mkmDk−1.
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Proof. See [Hua65, Lemma 4.3]. There is however a slight error in the proof. Their argu-

ment gives the bound

k−1∑
u=1

(
D

u

)
(2u)m ≤ 2m(k− 1)mDk−1

k−1∑
u=1

1

u!

≤ 2mkme−
m
k Dk−1(e− 1)

≤ 2mkmDk−1.

If one works a little bit harder one may also recover the bound claimed in [Hua65].

This next lemma is the key to the well-spacing Propositions 5.3.12 and 5.3.13. It is

essentially about bounding the number of solutions in a box Bm(N ,P ) ×Bm(N ,P )

by the number of solutions in its sub-boxes, most of which contain a (k-dimensional)

R-well-spaced box with R being of large size compared to the sub-box itself.

Lemma 5.3.10. For G ≥ 1, m ≥ k + 1, k ≥ 2 and P ≥ 2G, we have that |f(N ,P ,α)|2m is

bounded by

G

[
G∑

g=dlog2(2k)e

2mLg−1
m− k

(m−k)2mLg−1∑
|Fk2−gP (N

′, 2−gP ,α)|2|f(N ′, 2−gP ,α)|2(m−k)

+
LG
m

mLG∑
|f(N ′, 2−GP ,α)|2m

]
,

where all the boxes on the right-hand side are contained in the box B2m(N ,P ) and

Lg = 2mkm · (2g)k−1.

Proof. At the heart of the argument lies the equality

f(N ,P ,α) = f(N − P/4,P/2,α) + f(N + P/4,P/2,α). (5.23)

Iterating this equality shows that we have

f(N ,P ,α) =
2g−1∑
d=0

f(N − P/2+ (d+ 1/2)2−gP , 2−gP ,α)

for every g ∈N. This further leads to

f(N ,P ,α)m =
∑

0≤d≤2g−1

m∏
i=1

f(N − P/2+ (di + 1/2)2−gP , 2−gP ,α). (5.24)
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Now, the above box Bm(N − P/2+ (d+ 1/2)2−gP , 2−gP ) contains a (k-dimensional)

2−gP -well-spaced box if and only if the tuple d =(d1, . . . , dm) contains a (k-dimensional)

well-spaced sub-tuple.

Our plan is to extract the tuples which contain a well-spaced sub-tuple from (5.24)

before using (5.23) on the remaining summands. For this purpose, we are going to use

the binary expansion of the d’s. Given d ∈ Nm
0 , we define the predecessor of d to be

p(d) = (bd1/2c, . . . , bdm/2c). We also define the set of successors of d as S(d) = {d′ ∈

Nm
0 |p(d′) = d}. Note, that if p(d) contains a (k-dimensional) well-spaced sub-tuple,

then so does d. We abbreviate ‘d contains a (k-dimensional) well-spaced sub-tuple’ to ‘d

is good’. We are now able to prove the following identity for G ∈N0 inductively:

f(N ,P ,α)m =
G∑
g=0

∑
0≤d≤2g−1
d is good

p(d) is not good

m∏
i=1

f(N − P/2+ (di + 1/2)2−gP , 2−gP ,α)

+
∑

0≤d≤2G−1
d is not good

m∏
i=1

f(N − P/2+ (di + 1/2)2−GP , 2−GP ,α).

(5.25)

For G = 0, the right hand-side is just f(N ,P ,α)m as the first sum is empty. The induc-

tion step follows from the identity

m∏
i=1

f(N − P/2+(di + 1/2)2−GP , 2−GP ,α)

=
∑

d′∈S(d)

m∏
i=1

f(N − P/2+ (d′i + 1/2)2−(G+1)P , 2−(G+1)P ,α),

which is just (5.23) applied to each factor, applied to the latter sum in (5.25); i.e. the d’s

which are not good, and splitting up into good and not good tuples.

Now, we note that if g ≤ dlog2(2k)e − 1 we have that all tuples 0 ≤ d ≤ 2g − 1 are not

good, because if there were a good one, we would have

D = 2g ≥ 1+ dik = 1+
k−1∑
j=1

(dij+1 − dij ) + di1 ≥ 1+ 2(k− 1).

If g ≥ 1 we have 2g ≥ 2k as 2k − 1 is odd, leading to a contradiction. For g = 0, there

are obviously no good tuples. The next thing we note is the number of not good tuples

0 ≤ d ≤ 2g − 1 is at most

Lg = 2mkm · (2g)k−1,
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by Lemma 5.3.9. Moreover, we have |S(d)| = 2m which shows that the set of tuples

0 ≤ d ≤ 2g − 1 such that d is good and p(d) is not good has cardinality at most 2mLg−1.

Therefore, we conclude that the equality (5.25) is of the shape

f(N ,P ,α)m =
G∑

g=dlog2(2k)e

2mLg−1∑
Fk2−gP (N

′, 2−gP ,α)Fm−k(N ′′, 2−gP ,α)

+
LG∑

Fm(N ′′′, 2−GP ,α).

Applying Cauchy–Schwarz twice yields

|f(N ,P ,α)|2m ≤G

[
G∑

g=dlog2(2k)e

2mLg−1∑
|Fk2−gP (N

′, 2−gP ,α)||Fm−k(N ′′, 2−gP ,α)|

2

+

(
LG∑
|Fm(N ′′′, 2−GP ,α)|

)2]

≤G

[
G∑

g=dlog2(2k)e

2mLg−1

2mLg−1∑
|Fk2−gP (N

′, 2−gP ,α)|2|Fm−k(N ′′, 2−gP ,α)|2

+ LG

LG∑
|Fm(N ′′′, 2−GP ,α)|2

]
,

since G−dlog2(2k)e+ 1+ 1 ≤ G. By further using the inequality between the arithmetic

and geometric mean in the shape

|Fr(N ,M ,α)|2 ≤ 1

r

r∑
i=1

|f(Ni,M ,α)|2r,

we prove the desired inequality.

Remark 5.3.11. Potentially, one could gain more log2(2X) savings if one were to allow

mixed terms with different g’s, but the state of affairs is already complicated enough as

it is and so we omit exploring this possibility.

5.3.4 Core Propositions

In this section, we prove the core propositions which will be used in the final argument,

as outlined in Section 5.3.2. From now on, we will also assume that k ≥ 3.

This first proposition well-spaces a set of variables in order to get the iteration started.
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Proposition 5.3.12. Let G ∈ N and assume Xθ ≥ 2G with 0 < θ ≤ 1
k2

. Furthermore, let

s ≥ m ≥ k+ 1 and m ≤ 8k2. Then, we have that JJs,k(X)K is bounded by the sum:

C ′ ·G
G∑

g=dlog2(2k)e

(2g)2(k−1)−2(m−k) JIg0,1(X)K+C ′′ ·G ·
(
2G
)2(k−1)−m

s
(2s− 1

2
k(k+1)+η)

,

where

C ′ = 26m−4k+2k2m ·
(
1+

1

Xθ

)2(s−m)

,

C ′′ = 22m+1k2m.

Proof. We will use Lemma 5.3.10 for 2m factors in Js,k(X). We find

Js,k(X) ≤ G

 G∑
g=dlog2(2k)e

2mLg−1
m− k

(m−k)2mLg−1∑
Wg +

LG
m

mLG∑
N

 ,

where

Wg =

∫
[0,1[k

|Fk2−gX(N , 2−gX,α)|2|f(N , 2−gX,α)|2(m−k)|f(X/2,X,α)|2(s−m)dα,

N =

∫
[0,1[k

|f(N , 2−GX,α)|2m|f(X/2,X,α)|2(s−m)dα.

We refer to the first part as the well-spaced part and second part as the non-well-spaced

part. Let us first consider the part which is non-well-spaced. There, we have to consider

the integral N . We find

N ≤

(∫
[0,1[k

|f(N , 2−GX,α)|2sdα

)m
s
(∫

[0,1[k
|f(X/2,X,α)|2sdα

) s−m
s

≤Js,k(2−GX + 1)
m
s · Js,k(X)

s−m
s

by Hölder’s inequality and the integer translation invariance. Now, we have

2−GX + 1 = 2−GX(1+ 2GX−1) ≤ 2−GX

(
1+

9

28k2

)
as

2GX−1 ≤ X−1+θ ≤ 2θ
−1(−1+θ) ≤ 21−k

2 ≤ 9

28k2
.

In conclusion, the overall contribution to Js,k(X) from the non-well-spaced part is

G · 22mk2m
(
2G
)2(k−1) · Js,k ((1+ 9

28k2

)
2−GX

)m
s

· Js,k(X)
s−m
s , (5.26)

where we recalled LG = 2mkm(2G)k−1.
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For the 2−gX-well-spaced ones, we have to consider the integral Wg. We split up the

box B1(N , 2−gX), respectively B1(X/2,X), into boxes of size at most X1−θ. Moreover,

we may assume all the boxes have size X1−θ as it can only happen, that we account for

solutions multiple times. There are at most

2−gX

X1−θ + 1 = 2−gXθ ·
(
1+

2g

Xθ

)
≤ 2−gXθ · 2 = T ′g, say,

respectively
X

X1−θ + 1 = Xθ

(
1+

1

Xθ

)
= T ′′g , say,

boxes of this kind. Thus, we have thatWg is bounded by

∫
[0,1[k

|F2−gX(N , 2−gX,α)|2
∣∣∣∣∣∣
T ′g∑

f(N ,X1−θ,α)

∣∣∣∣∣∣
2(m−k) ∣∣∣∣∣∣

T ′′g∑
f(N ′,X1−θ,α)

∣∣∣∣∣∣
2(s−m)

dα,

which we immediately bound further by using Cauchy–Schwarz as follows∣∣∣∣∣∣
T ′g∑

f(N ,X1−θ,α)

∣∣∣∣∣∣
2(m−k) ∣∣∣∣∣∣

T ′′g∑
f(N ′,X1−θ,α)

∣∣∣∣∣∣
2(s−m)

≤

T ′g T ′g∑
|f(N ,X1−θ,α)|2

m−kT ′′g T ′′g∑
|f(N ′,X1−θ,α)|2

s−m

.

If we define

Tg = T
′(m−k)
g · T ′′(s−m)

g = 2m−k
(
2−g
)m−k (

1+
1

Xθ

)s−m
X(s−k)θ,

then we find after expanding the product of sums into a sum of products that

Wg ≤ Tg
∫
[0,1[k

|F2−gX(N , 2−gX,α)|2
 Tg∑ s−k∏

i=1

|f(N ′′i ,X1−θ,α)|2
 dα.

By using the inequality between the arithmetic and geometric mean and the integer

translation invariance, we bound the above further by

Wg ≤
Tg
s− k

(s−k)Tg∑ ∫
[0,1[k

|F2−gX(N , 2−gX,α)|2|f(N ′′,X1−θ,α)|2(s−k)dα

=
Tg
s− k

(s−k)Tg∑ ∫
[0,1[k

|F2−gX(N
′, 2−gX,α)|2|f(ξ,X1−θ,α)|2(s−k)dα

≤T 2
g · I

g
0,1(X).
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This last step of translating the variables such that some of the variables are small is

an essential prerequisite for the extraction argument (5.9) to follow. We find that the

well-spaced contribution is at most

G
G∑

g=dlog2(2k)e

26m−4k+2k2m (2g)2(k−1)−2(m−k)
(
1+

1

Xθ

)2(s−m)

X2(s−k)θ · Ig0,1(X). (5.27)

In conclusion, we have that Js,k(X) is bounded by the sum of (5.26) and (5.27). We now

normalise this inequality to get an inequality for JJs,k(X)K. After normalising, we easily

find that the well-spaced part of the proposition is true. In the non-well-spaced part, we

collect an additional factor of

log2
(
2
(
1+ 9

4k2

)
2−GX

)δm
s

log2(2X)δ
m
s

(
2−G

)m
s
(2s− 1

2
k(k+1)+η)

(
1+

9

28k2

)m
s
(2s− 1

2
k(k+1)+η)

.

The fraction of log’s is trivially bounded by 1 and since η ≤ 1
2k(k + 1) and m ≤ 8k2 we

have (
1+

9

28k2

)m
s
(2s− 1

2
k(k+1)+η)

≤
(
1+

9

28k2

)2m

≤ e
9m
27k2 ≤ 2.

This concludes the proof.

This next proposition is almost analogous to the previous one. The observant reader

may notice an important difference though. Here, the well-spacing step takes place two

steps ahead of when it is needed. This is advantageous as it allows for a smaller choice

of the parameter m in Lemma 5.3.10.

Proposition 5.3.13. Let H, a, b ∈ N0 with H ≥ 1 and b > a ≥ 0. Assume θ ∈ R satisfies

1 ≥ k2bθ > 0. LetX ≥ 2θ
−1 andXkbθ ≥ 2H . Let g ∈N such thatXbθ ≥ 2g ≥ 2k. Furthermore,

let 800k ≥ m ≥ k+ 1 and 66k2 log(k) ≥ s− k ≥ m. Then, we have that JIga,b(X)K is bounded

by the sum

C ′ ·H
H∑

h=dlog2(2k)e

(
2h
)2(k−1)

JKg,h
a,b;m(X)K

+C ′′ ·H (2g)−
k
s
(2s− 1

2
k(k+1)+η) (2H)2(k−1)−ms (2s− 1

2
k(k+1)+η)

·
(
Xθ
) 1

2
k(k+1) s−k

s
(b−a) (

X−ηθ
) k
s
a+ s−k

s
b
,

where
C ′ = 24m−2k+2 · k2m,

C ′′ = 22m+1 · k2m+1.
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Remark 5.3.14. In due course, H and m will be chosen in such a way that we have a

power saving in X in the non-well-spaced part.

Proof of Proposition 5.3.13. Consider N and ξ where the maximum of Iga,b(X) occurs. We

now apply Lemma 5.3.10 to 2m factors of |f(ξ,X1−bθ,α)|2(s−k). We find

Iga,b(X) ≤ H

 H∑
h=dlog2(2k)e

2mLh−1
m− k

(m−k)2mLh−1∑
Kg,h
a,b;m(X) +

LH
m

mLH∑
N

 ,

where N is equal to∫
[0,1[k
|Fk2−gX1−aθ(N , 2−gX1−aθ,α)|2|f(N , 2−HX1−bθ,α)|2m|f(ξ,X1−bθ,α)|2(s−m−k)dα.

We refer to the first part as the well-spaced part and second part as the non-well-spaced

part.

The well-spaced part is clearly bounded by

H · 24m−2k+2k2m
H∑

h=dlog2(2k)e

(
2h
)2(k−1)

Kg,h
a,b;m(X) (5.28)

after inserting the bound Lh−1 = 2mkm(2h−1)k−1. For the non-well-spaced part, we

bound N by Hölder’s inequality. This gives the bound

N ≤ I
k
s
1 I

m
s
2 I

s−m−k
s

3 ,

where
I1 =

∫
[0,1[k

|Fk2−gX1−aθ(N , 2−gX1−aθ,α)|
2s
k dα,

I2 =
∫
[0,1[k

|f(N , 2−HX1−bθ,α)|2sdα,

I3 =
∫
[0,1[k

|f(ξ,X1−bθ,α)|2sdα.

By using the inequality between the arithmetic and geometric mean on

|Fk2−gX1−aθ(N , 2−gX1−aθ,α)|
2s
k ≤ 1

k

k∑
i=1

|f(Ni, 2
−gX1−aθ,α)|2s

and the integer translation invariance, we find that

I1 ≤ Js,k(2−gX1−aθ + 1),

I2 ≤ Js,k(2−HX1−bθ + 1),

I3 ≤ Js,k(X1−bθ + 1).
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5.3 effective vinogradov mean value theorem

Now, we have

2−gX1−aθ + 1 = 2−gX1−aθ
(
1+ 2gX−1+aθ

)
≤ 2−gX1−aθ

(
1+

1

4 · 66k

)
,

since

2gX−1+aθ ≤ X−1+2bθ ·X−θ ≤ X−(k2−2)bθ · 2−1 ≤ (2k)−(k
2−2) · 2−1 ≤ 1

4 · 66k
.

Furthermore, we have

2−HX1−bθ + 1 = 2−HX1−bθ
(
1+ 2HX−1+bθ

)
≤ 2−HX1−bθ

(
1+

1

2 · 64k

)
and

X1−bθ + 1 = X1−bθ
(
1+X−1+bθ

)
≤ X1−bθ

(
1+

1

4 · 66k2

)
,

since

2HX−1+bθ ≤ X−1+(k+1)bθ ≤ X−(k2−k−1)bθ ≤ (2k)−(k
2−k−1) ≤ 1

2 · 64k

and

X−1+bθ ≤ X−(k2−1)bθ ≤ (2k)−(k
2−1) ≤ 1

4 · 66k2
.

Thus, we have that the non-well-spaced part is bounded by

H ·L2
H ·Js,k

((
1+

1

4 · 66k

)
2−gX1−aθ

) k
s

· Js,k
((

1+
1

2 · 64k

)
2−HX1−bθ

)m
s

Js,k

((
1+

1

4 · 66k2

)
X1−bθ

) s−m−k
s

.

(5.29)
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We have now that Iga,b(X) is bounded by the sum of (5.28) and (5.29). By taking the

maximum and normalising, we immediately see that the well-spaced part is true. In the

non-well-spaced part, we are left with

H ·L2
H ·

log
(
2
(
1+ 1

4·66k
)
2−gX1−aθ) ks δ

log(2X)
k
s
δ

·
log
(
2
(
1+ 1

2·64k
)
2−HX1−bθ)ms δ

log(2X)
m
s
δ

·
log
(
2
(
1+ 1

4·66k2
)
X1−bθ) s−m−ks

δ

log(2X)
s−m−k

s
δ

· (2g)−
k
s
(2s− 1

2
k(k+1)+η) ·

(
2H
)−m

s
(2s− 1

2
k(k+1)+η)

·
(
Xaθ

)2k− 1
2
k(k+1)− k

s
(2s− 1

2
k(k+1)+η)

·
(
Xbθ

)2(s−k)− s−k
s

(2s− 1
2
k(k+1)+η)

·
(
1+

1

4 · 66k

) k
s
(2s− 1

2
k(k+1)+η)

·
(
1+

1

2 · 64k

)m
s
(2s− 1

2
k(k+1)+η)

·
(
1+

1

4 · 66k2

) s−m−k
s

(2s− 1
2
k(k+1)+η)

.

(5.30)

The log’s are trivially bounded by 1 again and since η ≤ 1
2k(k+ 1) we have(

1+
1

4 · 66k

) k
s
(2s− 1

2
k(k+1)+η)

≤
(
1+

1

4 · 66k

)2k

≤ e
1

2·66 ,(
1+

1

2 · 64k

)m
s
(2s− 1

2
k(k+1)+η)

≤
(
1+

1

2 · 64k

)2m

≤ e
m
64k ≤ 2e−

1
2·66 ,(

1+
1

4 · 66k2

) s−m−k
s

(2s− 1
2
k(k+1)+η)

≤
(
1+

1

4 · 66k2

)2(s−k)
≤ e

s−k
2·66k2 ≤ k.

Furthermore, we have

(
Xaθ

)2k− 1
2
k(k+1)− k

s
(2s− 1

2
k(k+1)+η)

·
(
Xbθ

)2(s−k)− s−k
s

(2s− 1
2
k(k+1)+η)

=
(
Xθ
) 1

2
k(k+1) s−k

s
(b−a) (

X−ηθ
) k
s
a+ s−k

s
b
.

By inserting all of these equalities and inequalities together with LH = 2mkm(2H)k−1

into (5.30), we find that the non-well-spaced part of the proposition is true.

The next proposition is where we extract information as we force diagonal behaviour

using Lemma 5.3.7.

Proposition 5.3.15. Let a, b,m ∈ N0 with b > a ≥ 0 and 66k2 log(k) ≥ s− k ≥ m ≥ k + 1

and 800k ≥ m. Let θ ∈ R satisfy 1 ≥ k2bθ > 0 and let X ≥ 2θ
−1 . Furthermore, let g,h ∈ N

satisfy Xbθ ≥ 2g ≥ 2k and Xkbθ ≥ 2h ≥ 2k. Then, we have that JKg,h
a,b;m(X)K is bounded by

C ′ · (2g)−k+
1
2
k(k−1)

(
2h
)−(2s− 1

2
k(k+1)+η)

(
m
s
− k2

s(s−k)

)
· JIhb,kb(X)K

k
s−k ·X−

s−2k
s−k bθ·η,
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where

C ′ = 2
1
2
k(k+1)+5e

1
4
k(3k−2)k−

1
2
k(k−2)+1 · (s− k+ k2)k.

Proof. Consider an N ,N ′,N ′, ξ, where the maximum of Kg,h
a,b;m(X) occurs, and its cor-

responding Diophantine equation:

k∑
i=1

(xji − y
j
i ) =

k∑
i=1

(wji − z
j
i ) +

m−k∑
i=1

(uji − v
j
i ) +

s−m−k∑
i=1

(pji − q
j
i ), j = 1, . . . , k, (5.31)

where x,y ∈ Bk(N , 2−gX1−aθ), w, z ∈ Bk(N ′, 2−hX1−bθ), u,v ∈ Bm−k(N ′, 2−hX1−bθ)

and w, z,u,v,p, q ∈ Bs−m−k(ξ,X1−bθ). The right-hand side is contained in]
−2(s− k) (0.5001)j X(1−bθ)j , 2(s− k) (0.5001)j X(1−bθ)j

[
(5.32)

as
ξ +

1

2
X1−bθ ≤ 1

2
X1−bθ

(
1+X−1+bθ

)
≤ 1

2
X1−bθ

(
1+X−(k

2−1)bθ
)

≤ 1

2
X1−bθ

(
1+ (2k)−(k

2−1)
)

≤ 0.5001 ·X1−bθ.

The interval (5.32) we split up into intervals Vj of size at most

(s− k)X1−kbθ ·Xj−1.

We have at most
k∏
j=1

(
4 (0.5001)j X(k−j)bθ + 1

)
≤
∞∏
j=1

(
1+ 4 (0.5001)j

)
·X

1
2
k(k−1)bθ

≤ 24 ·X
1
2
k(k−1)bθ = Z ′, say,

choices for V = (Vj)j as

∞∏
j=1

(
1+ 4 (0.5001)j

)
≤

10∏
j=1

(
1+ 4 (0.5001)j

)
· exp

4
∞∑
j=11

(0.5001)j

 < 14.27 · 1.004 < 24.

Furthermore, we split up the box Bk(N , 2−gX1−aθ) for the y’s into sub-boxes of the

shape Bk(N ′′,X1−kbθ). We have at most(
X(kb−a)θ

2g
+ 1

)k
=
(
1+ 2gX−(kb−a)θ

)k X(kb−a)kθ

2gk

≤ e
1
4
X(kb−a)kθ

2gk
= Z ′′g , say,
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of these, since

2gX−(kb−a)θ ≤ X−((k−1)b−a)θ ≤ X−(k−2)bθX−θ ≤ (2k)−(k−2) · 2−1

and (
1+ (2k)−(k−2) · 2−1

)k
≤ e

1

4(2k)k−3 ≤ e
1
4 .

Let S(Bk(N ′′,X1−kbθ),V ) denote the number of solutions (x,y,w, z,u,v,p, q) of (5.31)

with the additional restriction that

k∑
i=1

(xji − y
j
i ) ∈ Vj (j = 1, . . . , k)

and y ∈ Bk(N ′′,X1−kbθ), so that the total number of solutions to (5.31) is bounded by

Z′∑ Z′′g∑
S(Bk(N ′′,X1−kbθ),V ). (5.33)

Two solutions (x,y,w, z,u,v,p, q), (x′,y′,w′, z′,u′,v′,p′, q′) of S(Bk(N ′,X1−kbθ),V )

satisfy the inequality∣∣∣∣∣
k∑
i=1

xji −
k∑
i=1

x′ji

∣∣∣∣∣ ≤
∣∣∣∣∣
k∑
i=1

(xji − y
j
i )−

k∑
i=1

(x′ji − y
′j
i )

∣∣∣∣∣+
∣∣∣∣∣
k∑
i=1

yji −
k∑
i=1

y′ji

∣∣∣∣∣
≤ (s− k)X1−kbθ ·Xj−1 + jkX1−kbθ ·Xj−1

≤ (s− k+ k2)X1−kbθ ·Xj−1.

(5.34)

Thus, we are able to apply Lemma 5.3.7 to bound S(Bk(N ′′,X1−kbθ),V ). We are able to

apply it with S = (s− k+ k2)X1−kbθ, R = 2−gX1−aθ, U the interval in (5.34), and W (x)

being the number of solutions (x,y,w, z,u,v,p, q) counted by S(Bk(N ′′,X1−kbθ),V ).

We get that (5.33) is bounded by

Z′∑ Z′′g∑
2

1
2
k(k+1)e

1
4
(3k+1)(k−1)k−

1
2
k(k−2) ·

(
2gXaθ

) 1
2
k(k−1)

· ZW (Bk(N ′′′,S′),U ), (5.35)

with 1 ≤ S′ ≤ (s− k+ k2)X1−kbθ. Now, ZW (Bk(N ′′′,S′),U ) is just counting the num-

ber of solutions of (5.31) with some further restrictions. The two we care about are

x ∈ Bk(N ′′′,S′) and y ∈ Bk(N ′′,X1−kbθ). Therefore, we have

ZW (Bk(N ′′′,S′),U )

≤
∫
[0,1[k

Fk2−gX1−aθ(N
′′′,S′,α)Fk2−gX1−aθ(N

′′,X1−kbθ,−α) · f?dα, (5.36)
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where

f? = |Fk2−hX1−bθ (N
′, 2−hX1−bθ,α)|2|f(N ′, 2−hX1−bθ,α)|2(m−k)|f(ξ,X1−bθ,α)|2(s−m−k).

We split up Bk(N ′′′,S′) further into (s− k + k2)k sub-boxes of size at most X1−kbθ,

which we may assume to have exactly size X1−kbθ. Thus, the integral in (5.36) is further

bounded by

(s−k+k2)k∑ ∫
[0,1[k

Fk2−gX1−aθ(N
′′′′,X1−kbθ,α)Fk2−gX1−aθ(N

′′,X1−kbθ,−α) · f?dα.

By using Hölder’s inequality, we further find

ZW (Bk(N ′′′,S′),U ) ≤
(s−k+k2)k∑

I
k

2(s−k)
1 I

k
2(s−k)
2 I

(s−2k)k
s(s−k)

3 I
m−k
s

4 I
s−m−k

s
5 , (5.37)

where

I1 =
∫
[0,1[k

|Fk2−hX1−bθ(N
′, 2−hX1−bθ,α)|2|Fk2−gX1−aθ(N

′′′′,X1−kbθ,α)|
2(s−k)
k dα,

I2 =
∫
[0,1[k

|Fk2−hX1−bθ(N
′, 2−hX1−bθ,α)|2|Fk2−gX1−aθ(N

′′,X1−kbθ,α)|
2(s−k)
k dα,

I3 =
∫
[0,1[k

|Fk2−hX1−bθ(N
′, 2−hX1−bθ,α)|

2s
k dα,

I4 =
∫
[0,1[k

|f(N ′, 2−hX1−bθ,α)|2sdα,

I5 =
∫
[0,1[k

|f(ξ,X1−bθ,α)|2sdα.

By using the inequality between the arithmetic and geometric mean on

|Fk2−gX1−aθ(N
′′,X1−kbθ,α)|

2(s−k)
k ≤ 1

k

k∑
i=1

|f(N ′′i ,X1−kbθ,α)|2(s−k)

and the integer translation invariance, we find that

I1 ≤ Ihb,bk(X).

Analogously, also

I2 ≤ Ihb,bk(X)

holds. Using the inequality between the arithmetic and geometric mean in a similar

fashion, we find by the integer translation invariance that

I3, I4 ≤ Js,k
(
2−hX1−bθ + 1

)
.

117



5.3 effective vinogradov mean value theorem

Again, by the integer translation invariance, we find that

I5 ≤ Js,k
(
X1−bθ + 1

)
.

We have
2−hX1−bθ + 1 = 2−hX1−bθ

(
1+ 2hX−1+bθ

)
≤ 2−hX1−bθ

(
1+

1

2 · 64k

)
,

since

2hX−1+bθ ≤ X−1+(k+1)bθ ≤ X−(k2−k−1)bθ ≤ (2k)−(k
2−k−1) ≤ 1

2 · 64k
,

and
X1−bθ + 1 = X1−bθ

(
1+X−1+bθ

)
≤ X1−bθ

(
1+

1

4 · 66k2

)
,

since

X−1+bθ ≤ X−(k2−1)bθ ≤ (2k)−(k
2−1) ≤ 1

4 · 66k2
.

By inserting the above analysis into (5.37) and further into (5.35), we conclude that

Kg,h
a,b;m(X) is bounded by

24X
1
2
k(k−1)bθe

1
4 2−gkX(kb−a)kθ2

1
2
k(k+1)e

1
4
(3k+1)(k−1)k−

1
2
k(k−2)(s− k+ k2)k

·
(
2gXaθ

) 1
2
k(k−1)

Ihb,bk(X)
k
s−k Js,k

((
1+

1

2 · 64k

)
2−hX1−bθ

)m
s
− k2

s(s−k)

· Js,k
((

1+
1

4 · 66k2

)
X1−bθ

) s−m−k
s

.

Let us apply the normalisations and analyse each parameter separately. The dependence

on X is going to be

log
(
2
(
1+ 1

2·64k
)
2−hX1−bθ)δ(ms − k2

s(s−k)

)

log(2X)
δ
(
m
s
− k2

s(s−k)

) ·
log
(
2
(
1+ 1

4·66k2
)
X1−bθ)δ s−m−ks

log(2X)δ
s−m−k

s

·
(
Xaθ

)2k− 1
2
k(k+1)−k+ 1

2
k(k−1) (

Xbθ
)2(s−k)+ 1

2
k(k−1)+k2− k

s−k (2k−
1
2
k(k+1)+2(s−k)k)

· (Xbθ)−
s−2k
s−k (2s−

1
2
k(k+1)+η).

The fraction with log’s are bounded by 1 again. The exponent of Xaθ is 0 and the expo-

nent of Xbθ reduces to − s−2k
s−k η after a short computation. The dependence on h is

(
2h
)−(2s− 1

2
k(k+1)+η)

(
m
s
− k2

s(s−k)

)
.
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The dependence on g is

(2g)−k+
1
2
k(k−1) .

And finally, the constant is

24·e
1
4 · 2

1
2
k(k+1)e

1
4
(3k+1)(k−1) · k−

1
2
k(k−2) · (s− k+ k2)k

·
(
1+

1

2 · 64k

)(2s− 1
2
k(k+1)+η)

(
m
s
− k2

s(s−k)

)
·
(
1+

1

4 · 66k2

)(2s− 1
2
k(k+1)+η) s−m−ks

.

Since η ≤ 1
2k(k+ 1), we have

(
1+

1

2 · 64k

)(2s− 1
2
k(k+1)+η)

(
m
s
− k2

s(s−k)

)
≤ e

2s
2·64k

m
s ≤ e

m
64k ≤ 2

and (
1+

1

4 · 66k2

)(2s− 1
2
k(k+1)+η) s−m−ks

≤ e
2s

4·66k2
s−k
s ≤ e

s−k
2·66k2 ≤ k.

Thus, we find that the constant is bounded by

2
1
2
k(k+1)+5e

1
4
k(3k−2)k−

1
2
k(k−2)+1 · (s− k+ k2)k.

This final proposition is essentially the same as the previous one, the difference being

that the iteration comes to a halt after this step.

Proposition 5.3.16. Let a, b ∈N0 with b > a. Let θ ∈ R satisfy 1 ≥ kbθ > 0 and let X ≥ 2θ
−1 .

Furthermore, let g ∈N satisfy Xbθ ≥ 2g ≥ 2k and 2k2 log(k) ≥ s− k. Then, we have:

JIga,b(X)K ≤ C ′ · (2g)−k+
1
2
k(k−1)X

k2(k2−1)
2s

bθX−η
s+k2−k

s
bθ,

where

C ′ = 2
1
2
k(k+5)+4 · e

1
4
k(3k−2) · k−

1
2
k(k−2)+1 · (s− k+ k2)k.

Proof. Consider an N , ξ, where the maximum of Iga,b(X) occurs, and its corresponding

Diophantine equation:

k∑
i=1

(xji − y
j
i ) =

s−k∑
i=1

(pji − q
j
i ), j = 1, . . . , k, (5.38)

where x,y ∈ Bk(N , 2−gX1−aθ) and p, q ∈ Bs−k(ξ,X1−bθ).
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From here, we proceed as in the previous proposition, but in this case we need to

adjust our definition of S(Bk(N ′′,X1−kbθ),V ). Let S(Bk(N ′′,X1−kbθ),V ) denote the

number of solutions (x,y,p, q) of (5.38) with the additional restriction that

k∑
i=1

(xji − y
j
i ) ∈ Vj (j = 1, . . . , k)

and y ∈ Bk(N ′′,X1−kbθ), so that the total number of solutions to (5.38) is bounded by

Z′∑ Z′′g∑
S(Bk(N ′′,X1−kbθ),V ). (5.39)

Consider now two solutions (x,y,p, q), (x′,y′,p′, q′) of S(Bk(N ′,X1−kbθ),V ). In this

case, we have∣∣∣∣∣
k∑
i=1

xji −
k∑
i=1

x′ji

∣∣∣∣∣ ≤
∣∣∣∣∣
k∑
i=1

(xji − y
j
i )−

k∑
i=1

(x′ji − y
′j
i )

∣∣∣∣∣+
∣∣∣∣∣
k∑
i=1

yji −
k∑
i=1

y′ji

∣∣∣∣∣
≤ (s− k)X1−kbθ ·Xj−1 + jkX1−kbθ ·Xj−1

≤ (s− k+ k2)X1−kbθ ·Xj−1.

(5.40)

Thus, we are again able to apply Lemma 5.3.7 to bound S(Bk(N ′′,X1−kbθ),V ). We use

the lemma with the weight function W (x) being the number of solutions (x,y,p, q)

counted by S(Bk(N ′′,X1−kbθ),V ) and U being the interval in (5.40). We arrive at the

conclusion that (5.39) is bounded by

Z′∑ Z′′g∑
2

1
2
k(k+1)e

1
4
(3k+1)(k−1)k−

1
2
k(k−2) ·

(
2gXaθ

) 1
2
k(k−1)

· ZW (Bk(N ′′′,S′),U ), (5.41)

with 1 ≤ S′ ≤ (s− k+ k2)X1−kbθ. Now, ZW (Bk(N ′′′,S′),U ) is just counting the num-

ber of solutions of (5.38) with some further restrictions. The two we care about are

x ∈ Bk(N ′′′,S′) and y ∈ Bk(N ′′,X1−kbθ). Thus, we arrive at

ZW (Bk(N ′′′,S′),U )

≤
∫
[0,1[k

Fk2−gX1−aθ(N
′′′,S′,α)Fk2−gX1−aθ(N

′′,X1−kbθ,−α)|f(ξ,X1−bθ,α)|2(s−k)dα.

(5.42)

We split up Bk(N ′′′,S′) further into (s− k + k2)k sub-boxes of size at most X1−kbθ,

which we may assume to have exactly size X1−kbθ. Thus, the integral in (5.42) is further

bounded by

(s−k+k2)k∑ ∫
[0,1[k

Fk2−gX1−aθ(N
′′′′,X1−kbθ,α)Fk2−gX1−aθ(N

′′,X1−kbθ,−α)

· |f(ξ,X1−bθ,α)|2(s−k)dα.
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We further find by using Hölder’s inequality, that

ZW (Bk(N ′′′,S′),U ) ≤
(s−k+k2)k∑

I
k
2s
1 I

k
2s
2 I

s−k
s

3 , (5.43)

where
I1 =

∫
[0,1[k

|Fk2−gX1−aθ(N
′′,X1−kbθ,α)|

2s
k dα,

I2 =
∫
[0,1[k

|Fk2−gX1−aθ(N ,X1−kbθ,α)|
2s
k dα,

I3 =
∫
[0,1[k

|f(ξ,X1−bθ,α)|2sdα.

By using the inequality between the arithmetic and geometric mean on

|Fk2−gX1−aθ(N
′′,X1−kbθ,α)|

2s
k ≤ 1

k

k∑
i=1

|f(N ′′i ,X1−kbθ,α)|2s

and the integer translation invariance, we find that

I1 ≤ Js,k(X1−kbθ + 1) ≤ Js,k(2X1−kbθ).

Analogously, also

I2 ≤ Js,k(X1−kbθ + 1) ≤ Js,k(2X1−kbθ)

holds. And finally, by the integer translation invariance, we find

I3 ≤ Js,k
(
X1−bθ + 1

)
.

We have
X1−bθ + 1 = X1−bθ

(
1+X−1+bθ

)
≤ X1−bθ

(
1+

1

4k2

)
,

since

X−1+bθ ≤ X−(k−1)bθ ≤ (2k)−(k−1) ≤ 1

4k2
.

By inserting the above analysis into (5.43) and further (5.41), we conclude that Iga,b(X) is

bounded by

24X
1
2
k(k−1)bθe

1
4 2−gkX(kb−a)kθ2

1
2
k(k+1)e

1
4
(3k+1)(k−1)k−

1
2
k(k−2) ·

(
2gXaθ

) 1
2
k(k−1)

· (s− k+ k2)k · Js,k(2X1−kbθ)
k
s Js,k

((
1+

1

4k2

)
X1−bθ

) s−k
s

.
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Let us apply the normalisations and analyse each parameter separately. The dependence

on X is going to be

log
(
4X1−kbθ)δ ks

log(2X)δ
k
s

·
log
(
2
(
1+ 1

4k2

)
X1−bθ)δ s−ks

log(2X)δ
s−k
s

·
(
Xaθ

)2k− 1
2
k(k+1)−k+ 1

2
k(k−1)

·
(
Xbθ

)2(s−k)+ 1
2
k(k−1)+k2− k

2

s (2s−
1
2
k(k+1)+η)− s−ks (2s− 1

2
k(k+1)+η)

.

The fraction with log’s are bounded by 1 again. The exponent of Xaθ is 0 and the expo-

nent of Xbθ reduces to k2(k2−1)
2s − s−k+k2

s η after a short computation. The dependence on

g is (2g)−k+
1
2
k(k−1). And finally, the constant is

24 · e
1
4 · 2

1
2
k(k+1)e

1
4
(3k+1)(k−1) · k−

1
2
k(k−2) · (s− k+ k2)k

· 2(2s−
1
2
k(k+1)+η) ks ·

(
1+

1

4k2

)(2s− 1
2
k(k+1)+η) s−ks

.

Since η ≤ 1
2k(k+ 1), we have

2(2s−
1
2
k(k+1)+η) ks ≤ 22k

and (
1+

1

4k2

)(2s− 1
2
k(k+1)+η) s−ks

≤ e
2s
4k2

s−k
s ≤ e

s−k
2k2 ≤ k.

Therefore, we see that the constant is bounded by

24 · 2
1
2
k(k+1)e

1
4
k(3k−2)k−

1
2
k(k−2) · (s− k+ k2)k · 22k · k.

5.3.5 Iterative Process

In this section, we iterate through the Propositions 5.3.13 and 5.3.15 as often as we can.

This was already outlined in Section 5.3.2 and we recommend the reader to have a

second look at it before advancing, since the argument to follow is essentially the same

with the exception that there are more parameters to be analysed and chosen.

Let us recall some of our notation of the outline. Let D ≥ 1 be an integer and set

θ = k−(D+1). Let (a0, b0), (a1, b1), (a2, b2), . . . , (aD, bD) denote the sequence

(0, 1), (1, k), (k, k2), . . . , (kD−1, kD).
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Furthermore, we assume X ≥ 2k
D+1

and 2 log(k) ≥ λ = s−k
k2
≥ 1. We now fix a choice of

parameters, which we will justify later on. Set

Gn = bknθ log2(X)c, for n = 0, . . . ,D

and

mn =


⌊
1
4k(k+ 1) + 4

3k−
1
2

⌋
, if n = 0,⌊

5
3k
⌋
, if n = 1, . . . ,D.

(5.44)

We remark here, that the choice of Gn will ensure that the conditions

Xkbn−1θ = Xbnθ ≥ 2Gn ≥ 2gn ≥ 2k (5.45)

of the Propositions 5.3.12, 5.3.13, 5.3.15 and 5.3.16 are satisfied, where the last inequality

comes from the restriction of our well-spaced parameter gn in Lemma 5.3.10. We would

also like to highlight the inequalities

1

4
k(k+ 1) +

4

3
k− 1

2
≥ m0 ≥

1

4
k(k+ 1) +

4

3
k− 4

3

and
5

3
k ≥ mn ≥

5

3
k− 2

3
, ∀n = 1, . . . ,D,

which will be frequently used. The conditions of Proposition 5.3.12 are now clearly met.

Thus, we get

JJs,k(X)K ≤C ′ ·G0

G0∑
g0=dlog2(2k)e

(2g0)2(k−1)−2(m0−k) JIg00,1(X)K

+C ′′ ·G0

(
2G0
)2(k−1)−m0

s
(2s− 1

2
k(k+1)+η)

,

where

C ′ = 26m0−4k+2k2m0 ·
(
1+

1

Xθ

)2(s−m0)

,

C ′′ = 22m0+1k2m0 .

By using the inequalities on m0 and G0 ≤ k−(D+1) log2(2X), we find

JJs,k(X)K ≤ log2(2X)

C0

G0∑
g0=dlog2(2k)e

(2g0)2(k−1)−2(m0−k) JIg00,1(X)K+E0

 ,

where

C0 = 2
3
2
k2+ 11

2
k−1k

1
2
k2+ 19

6
k−2−D

(
1+

1

Xθ

)2(s−m0)
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and

E0 = 2
1
2
k2+ 19

6
kk

1
2
k2+ 19

6
k−2−D (2G0

)2(k−1)−m0
s

(2s− 1
2
k(k+1)+η)

.

We have

2s− 1
2k(k+ 1) + η

s
≥ 3

2
+

η

k(k+ 1)
⇔
(
1

2
k(k+ 1)− η

)(
s

k(k+ 1)
− 1

)
≥ 0

and therefore we further find

E0 ≤ 2
1
2
k2+ 19

6
kk

1
2
k2+ 19

6
k−2−D (2G0

)2(k−1)− 3
2
m0− m0

k(k+1)
η

≤ 2
1
2
k2+ 19

6
kk

1
2
k2+ 19

6
k−2−D (2G0

)− 3
8
k(k+1)− 1

4
η

≤ 2
1
2
k2+ 19

6
kk

1
2
k2+ 19

6
k−2−D

(
Xθ

2

)− 3
8
k(k+1)− 1

4
η

≤ 2k
2+ 11

3
kk

1
2
k2+ 19

6
k−2−DX−ηθ.

In conclusion, we have

JJs,k(X)K ≤ log2(2X) ·Ψ0,

where

Ψ0 = C0
G0∑

g0=dlog2(2k)e

(2g0)α0 JIg0a0,b0(X)K+ C†0 ·X
−ηθ s−2k

s−k

and

C0 = 2
3
2
k2+ 11

2
k−1k

1
2
k2+ 19

6
k−2−D

(
1+

1

Xθ

)2(s−m0)

,

C†0 = 2k
2+ 11

3
kk

1
2
k2+ 19

6
k−2−D,

α0 = 2(k− 1)− 2(m0 − k).

It is evident that we gave up some saving in the error term E0. This is because this is

the maximal amount of power saving we are able get in the error term E1 of the next

iteration.

We further define

Ψn =Cn
(
X−ηθ

) s−2k
s−k

∑n−1
i=0 bi( k

s−k )
i
 Gn∑
gn=dlog2(2k)e

(2gn)αn JIgnan,bn(X)K
k
s−k

( k
s−k )

n−1

+ C†n ·X
−ηθ s−2k

s−k ,

(5.46)

for n = 1, . . . ,D, where

αn =


2(k− 1)− 2(m0 − k), n = 0,

2(k− 1)− (2s− 1
2k(k+ 1) + η)

(
mn
s −

k2

s(s−k)

)
, n = 1, . . . ,D,
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and Cn, C†n are some constants, which are going to be defined recursively in (5.58) and

(5.59). We now use Propositions 5.3.13 and 5.3.15 to prove the following proposition.

Proposition 5.3.17. With the notation as above and the assumptions mentioned at the beginning

of this section, we have

Ψn ≤ log2(2X)(
k
s−k )

n

·Ψn+1, ∀n = 0, . . . ,D− 1. (5.47)

Proof. As the cases n = 0 and n ≥ 1 are quite similar, we will consider them at the same

time. Because of the Inequality (5.45) and because n ≤ D− 1 implies 1 ≥ k2bnθ > 0, we

are able to apply Proposition 5.3.13 to JIgnan,bn(X)K and get

JIgnan,bn(X)K ≤ Cn+1 ·Gn+1

Gn+1∑
gn+1=dlog2(2k)e

(2gn+1)2(k−1) JKgn,gn+1

an,bn;mn+1
(X)K+Gn+1 ·En+1,

where

Cn+1 = 24mn+1−2k+2 · k2mn+1 (5.48)

and

En+1 =22mn+1+1 · k2mn+1+1 · (2gn)−
k
s
(2s− 1

2
k(k+1)+η)

·
(
2Gn+1

)2(k−1)−mn+1
s

(2s− 1
2
k(k+1)+η)

(
Xθ
) 1

2
k(k+1) s−k

s
(bn−an) (

X−ηθ
) k
s
an+

s−k
s
bn

.

(5.49)

In the first sum, we further make use of Proposition 5.3.15, which gives

JKgn,gn+1

an,bn;mn+1
(X)K ≤C ′n+1 · (2gn)

−k+ 1
2
k(k−1) (2gn+1)

−(2s− 1
2
k(k+1)+η)

(
mn+1
s
− k2

s(s−k)

)

· JIgn+1

an+1,bn+1
(X)K

k
s−k ·

(
X−ηθ

) s−2k
s−k bn

,

where

C ′n+1 = 2
1
2
k(k+1)+5 · e

1
4
k(3k−2) · k−

1
2
k(k−2)+1 · (s− k+ k2)k. (5.50)

In the case of n = 0, we arrive at the inequality

Ψ0 ≤C1C
′
1C0G1

(
X−ηθ

) s−2k
s−k b0

G0∑
g0=dlog2(2k)e

(2g0)α0−k+ 1
2
k(k−1)

G1∑
g1=dlog2(2k)e

(2g1)α1 JIg1a1,b1(X)K
k
s−k

+ C0
G0∑

g0=dlog2(2k)e

(2g0)α0 G1E1 + C†0 ·X
−ηθ s−2k

s−k .

(5.51)
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For n ≥ 1, we further use the elementary inequality (x+ y)r ≤ xr + yr twice, which

holds for x, y ≥ 0 and 0 ≤ r ≤ 1, and arrive at the inequality

Ψn ≤Cn
(
X−ηθ

) s−2k
s−k

∑n−1
i=0 bi( k

s−k )
i
[(
X−ηθ

) s−2k
s−k bn(

k
s−k )

Gn∑
gn=dlog2(2k)e

(2gn)αn+
k
s−k (−k+

1
2
k(k−1))

·

(
Cn+1C

′
n+1Gn+1

Gn+1∑
gn+1=dlog2(2k)e

(2gn+1)αn+1 JIgn+1

an+1,bn+1
(X)K

k
s−k

) k
s−k

+
Gn∑

gn=dlog2(2k)e

(2gn)αn (Gn+1En+1)
k
s−k

]( k
s−k )

n−1

+ C†nX
−ηθ s−2k

s−k

≤Cn
(
X−ηθ

) s−2k
s−k

∑n
i=0 bi(

k
s−k )

i
[

Gn∑
gn=dlog2(2k)e

(2gn)αn+
k
s−k (−k+

1
2
k(k−1))

·

(
Cn+1C

′
n+1Gn+1

Gn+1∑
gn+1=dlog2(2k)e

(2gn+1)αn+1 JIgn+1

an+1,bn+1
(X)K

k
s−k

) k
s−k
]( k

s−k )
n−1

+ Cn
(
X−ηθ

) s−2k
s−k

[
Gn∑

gn=dlog2(2k)e

(2gn)αn (Gn+1En+1)
k
s−k

]( k
s−k )

n−1

+ C†nX
−ηθ s−2k

s−k .

(5.52)

Next, we show that the exponent of 2gn is at most −1 if n = 0 and −1
3 otherwise. First,

we consider the case n = 0. There, we have

2(k− 1)− 2(m0 − k)− k+
1

2
k(k− 1) ≤ −1⇔ 1

4
k(k+ 1) + k− 1

2
≤ m0,

which is true. Now, we analyse the case when n > 0. There, we have to bound

2(k− 1)−
(
2s− 1

2
k(k+ 1) + η

)(
mn

s
− k2

s(s− k)

)
+

k

s− k

[
−k+ 1

2
k(k− 1)

]
.

Since mn ≥ 1 ≥ k2

s−k , we only make the expression bigger when replacing 2s− 1
2k(k +

1) + η by 3
2s as the latter is smaller. Thus, we are left to bound

2(k− 1)− 3

2

(
mn −

k2

s− k

)
+

k

s− k

[
−k+ 1

2
k(k− 1)

]
=2(k− 1)− 3

2
mn +

k

s− k

[
3

2
k− k+ 1

2
k(k− 1)

]
.

Now, we have 3
2k − k +

1
2k(k − 1) ≥ 0 and hence the expression gets bigger when we

replace s by k2 + k as the latter is smaller. We are left to deal with

5

2
k− 2− 3

2
mn.
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It suffices to have
5

2
k− 2− 3

2
mn ≤ −

1

3
⇔ 5

3
k− 10

9
≤ mn,

which is true. Therefore, we conclude

G0∑
g0=dlog2(2k)e

(2g0)α0−k+ 1
2
k(k−1) ≤ 1

k
,

Gn∑
gn=dlog2(2k)e

(2gn)αn+
k
s−k (−k+

1
2
k(k−1)) ≤ 4

k
1
3

∀n ≥ 1.

(5.53)

Now, we turn our attention to the analysis of the error term; i.e. the terms involving

En+1. Let us consider the exponent of 2gn first. For n = 0, the exponent is

2(k− 1)− 2(m0 − k)−
k

s

(
2s− 1

2
k(k+ 1) + η

)
≤ 2(k− 1)− 2(m0 − k)−

3

2
k

≤ −1

2
k2 − 2

3
k+

2

3
≤ −1.

Thus, we have

G0∑
g0=dlog2(2k)e

(2g0)α0− ks (2s−
1
2
k(k+1)+η) ≤ 2(2k)−

1
2
k2− 2

3
k+ 2

3 . (5.54)

For n ≥ 1, the exponent is

2(k− 1)−
(
2s− 1

2
k(k+ 1) + η

)(
mn

s
− k2

s(s− k)

)
− k

s− k
k

s

(
2s− 1

2
k(k+ 1) + η

)
= 2(k− 1)− mn

s

(
2s− 1

2
k(k+ 1) + η

)
≤ 2(k− 1)− 3

2
mn

≤ −1

2
k− 1.

Thus, we get for n ≥ 1, that

Gn∑
gn=dlog2(2k)e

(2gn)αn−
k
s−k

k
s (2s−

1
2
k(k+1)+η) ≤ 2(2k)−

1
2
k−1. (5.55)

Now, we consider the power of X in the error term En+1; i.e. we are having a detailed

look at

(
2Gn+1

)2(k−1)−mn+1
s

(2s− 1
2
k(k+1)+η)

(
Xθ
) 1

2
k(k+1) s−k

s
(bn−an) (

X−ηθ
) k
s
an+

s−k
s
bn

.

For n = 0, we bound (
X−ηθ

) k
s
a0+

s−k
s
b0
≤ X−ηθ

s−2k
s−k
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and for n ≥ 1 we bound trivially(
X−ηθ

) k
s
an+

s−k
s
bn
≤ 1.

For the rest, we use the inequality Gn+1 ≥ kn+1θ log2(X)− 1 and find

(
2Gn+1

)2(k−1)−mn+1
s

(2s− 1
2
k(k+1)+η)

(
Xθ
) 1

2
k(k+1) s−k

s
(bn−an)

≤

(
Xθkn+1

2

)2(k−1)− 3
2
mn+1 (

Xθkn+1
) 1

2
(k+1)

≤ 2
1
2
k+1

(
Xθkn+1

)− 1
2

≤ 2
1
2
k+12−

1
2
kn+1

≤


2, n = 0,

1, n ≥ 1.

The latter seems inefficient, but one has to consider that the ((s− k)/k)n-th root will be

taken of it in due course. Hence, we have

(
2Gn+1

)2(k−1)−mn+1
s

(2s− 1
2
k(k+1)+η)

(
Xθ
) 1

2
k(k+1) s−k

s
(bn−an) (

X−ηθ
) k
s
an+

s−k
s
bn

≤


2X−ηθ

s−2k
s−k , n = 0,

1, n ≥ 1.

(5.56)

Lastly, we have

Gn+1 ≤ kn−D log2(2X) ≤


k−D log2(2X), n = 0,

k−1 log2(2X), n ≥ 1.

(5.57)

By collecting all of the previous analysis, we have proven (5.47). We go through this one

step at a time. For n = 0, we combine (5.51) with (5.53) and (5.57); this gives us the main

term and C1 as in (5.58). For the error term, we combine (5.51) with (5.49), (5.54), (5.56)

and (5.57). This yields the following admissible value for C†1:

C1 = C0 ·C1C
′
1 · k−D · k−1,

C†1 = C
†
0 + C0 ·2

2m1+1 ·k2m1+1 ·2(2k)−
1
2
k2− 2

3
k+ 2

3 ·k−D ·2

≤ C†0 + C0 ·2
10
3
k+1 ·k

10
3
k+1 ·2(2k)−

1
2
k2− 2

3
k+ 2

3 ·k−D ·2

≤ C†0 + C0 ·2
− 1

2
k2+ 8

3
k+ 11

3 k−
1
2
k2+ 8

3
k+ 5

3
−D.

(5.58)
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For n = 1, . . . ,D − 1, we combine (5.52) with (5.53) and (5.57); this gives us the main

term with Cn+1 as in (5.59). For the error term, we combine (5.52) with (5.49), (5.55),

(5.56) and (5.57). This yields the following admissible value for C†n+1:

Cn+1 = Cn ·
(

4

k
1
3

)( k
s−k )

n−1 (
Cn+1C

′
n+1 · k−1

)( k
s−k )

n

,

C†n+1 = C
†
n + Cn

(
2(2k)−

1
2
k−1
)( k

s−k )
n−1 (

22mn+1+1k2mn+1+1k−1
)( k

s−k )
n

.

(5.59)

We bound C†n+1 further by

C†n+1 ≤ C
†
n + Cn

((
2(2k)−

1
2
k−1
)k
· 22mn+1+1k2mn+1+1k−1

)( k
s−k )

n

≤ C†n + Cn
(
2−

1
2
k2+ 10

3
k+1k−

1
2
k2+ 7

3
k
)( k

s−k )
n

.

(5.60)

It remains to estimate ΨD. This is done with the help of Proposition 5.3.16 and yields

the following proposition.

Proposition 5.3.18. With the assumptions as in Proposition 5.3.17, we have

ΨD ≤ CD+1X
k2(k2−1)

2s
bD( k

s−k )
D
θ−η s−2k

s−k
∑D
i=0 bi(

k
s−k )

i
θ + C†D ·X

−ηθ s−2k
s−k ,

where

CD+1 = CD ·
(

4

k
1
3

)( k
s−k )

D−1

C ′D+1
( k
s−k )

D

and
C ′D+1 = 2

1
2
k(k+5)+4 · e

1
4
k(3k−2) · k−

1
2
k(k−2)+1 · (s− k+ k2)k

= C ′D · 22k.

Proof. The proof follows from Proposition 5.3.16 combined with (5.53) applied to (5.46).

We are left with estimating the constants. For n = 1, . . . ,D, we have from (5.48)

Cn = 24mn−2k+2 · k2mn ≤ 2
14
3
k+2 · k

10
3
k

and from (5.50)

C ′n = 2
1
2
k(k+1)+5 · e

1
4
k(3k−2) · k−

1
2
k(k−2)+1 · (s− k+ k2)k.
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By inserting this into Proposition 5.3.17 and using the Definition (5.59), we geta

Cn ≤2
3
2
k2+ 11

2
k−1k

1
2
k2+ 19

6
k−2−2D

(
1+

1

Xθ

)2(s−m0)

·
(

4

k
1
3

)∑n−2
i=0 (

k
s−k )

i

·
(
2

1
2
k2+ 31

6
k+7e

3
4
k2− 1

2
kk−

1
2
k2+ 19

3
k(λ+ 1)k

)∑n−1
i=0 (

k
s−k )

i
(5.61)

for n = 1, . . . ,D. We further have

22k ≤ 2
14
3
k+2 · k

10
2
k · k−1.

By using these two inequalities with Proposition 5.3.18, we get

CD+1 ≤2
3
2
k2+ 11

2
k−1k

1
2
k2+ 19

6
k−2−2D

(
1+

1

Xθ

)2(s−m0)

·
(

4

k
1
3

)∑D−1
i=0 ( k

s−k )
i

·
(
2

1
2
k2+ 31

6
k+7e

3
4
k2− 1

2
kk−

1
2
k2+ 19

3
k(λ+ 1)k

)∑D
i=0(

k
s−k )

i

.

(5.62)

We now turn our attention to bounding C†n. We continue the estimation (5.58) for C†1:

C†1 ≤2
k2+ 11

3
kk

1
2
k2+ 19

6
k−2−D + 2

3
2
k2+ 11

2
k−1k

1
2
k2+ 19

6
k−2−D

(
1+

1

Xθ

)2(s−m0)

· 2−
1
2
k2+ 8

3
k+ 11

3 k−
1
2
k2+ 8

3
k+ 5

3
−D

≤2
3
2
k2+ 11

2
k−1k

1
2
k2+ 19

6
k−2−D

(
1+

1

Xθ

)2(s−m0)

·
(
2−

1
2
k2− 11

6
k+1 + 2−

1
2
k2+ 8

3
k+ 11

3 k−
1
2
k2+ 8

3
k+ 5

3
−D
)
.

(5.63)

By using induction on (5.60) with (5.61) and (5.63) as a base, we further find

C†n ≤2
3
2
k2+ 11

2
k−1k

1
2
k2+ 19

6
k−2−D

(
1+

1

Xθ

)2(s−m0)

·

[
2−

1
2
k2− 11

6
k+1 + 2−

1
2
k2+ 8

3
k+ 11

3 k−
1
2
k2+ 8

3
k+ 2

3

+ k−1
n∑
i=2

((
4

k
1
3

)∑i−3
j=0(

k
s−k )

j (
2

1
2
k2+ 31

6
k+7e

3
4
k2− 1

2
kk−

1
2
k2+ 19

3
k(λ+ 1)k

)∑i−1
j=0(

k
s−k )

j
)]

(5.64)

for n = 1, . . . ,D, where we have made use of the inequality

2−
1
2
k2+ 10

3
k+1k−

1
2
k2+ 7

3
k ≤ 2

1
2
k2+ 31

6
k+7e

3
4
k2− 1

2
kk−

1
2
k2+ 19

3
k(λ+ 1)k

and k−D ≤ k−1. Let us now tame the inequality (5.64). We have for any n ∈ Z(
4

k
1
3

)∑n
i=0(

k
s−k )

i

≤ max

{
1, sup
k≥3

(
4

k
1
3

) k
k−1

}
≤ 23√

3
≤ 2k

a Here and throughout this section,
∑−l
i=0 denotes the empty sum for any l > 0 and equals 0.
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as the latter is a decreasing function in k. LetM denote the maximum of the quantities

2−
1
2
k2− 11

6
k,

2−
1
2
k2+ 8

3
k+ 8

3k−
1
2
k2+ 8

3
k+ 2

3 ,(
2

1
2
k2+ 31

6
k+7e

3
4
k2− 1

2
kk−

1
2
k2+ 19

3
k(λ+ 1)k

)γ
, γ ∈

{
1,

s− k
s− 2k

}
,

(5.65)

then we have

C†D ≤ 2
3
2
k2+ 11

2
kk

1
2
k2+ 19

6
k−2−D

(
1+

1

Xθ

)2(s−m0)

· (D+ 1)M

≤ 2
3
2
k2+ 11

2
kk

1
2
k2+ 19

6
k−2

(
1+

1

Xθ

)2(s−m0)

M.

Returning to (5.62), we also have

CD+1 ≤ 2
3
2
k2+ 11

2
kk

1
2
k2+ 19

6
k−2

(
1+

1

Xθ

)2(s−m0)

M.

We immediately see that the middle expression in (5.65) is dominated by the latter one.

We also make use of the inequality λ+ 1 ≤ k2 and hence M is at most M0, where we

recall (5.11):

M0 = max
γ∈{1, s−k

s−2k
}

{(
2

1
2
k2+ 31

6
k+7e

3
4
k2− 1

2
kk−

1
2
k2+ 25

3
k
)γ

, 2−
1
2
k2− 11

6
k

}
.

We conclude the following proposition.

Proposition 5.3.19. Let s, k ∈N with k ≥ 3 and 2 log(k) ≥ λ = s−k
k2
≥ 1. Further, let D ≥ 1

be an integer and set θ = k−(D+1). Assume that

Js,k(X) ≤ C log2(2X)δX2s− 1
2
k(k+1)+η ∀X ≥ 1,

for some 0 ≤ δ and 0 < η ≤ 1
2k(k+ 1). Then, we have

Js,k(X) ≤ C ′ log2(2X)δ+
2λk−1
λk−1 X2s− 1

2
k(k+1)+η

(
X∆θ +X−ηθ

s−2k
s−k
)
∀Xθ ≥ 2,

where

∆ =
k2(k2 − 1)

2s
λ−D − η s− 2k

s− k

D∑
i=0

λ−i,

C ′ = C · 2
3
2
k2+ 11

2
kk

1
2
k2+ 19

6
k−2

(
1+

1

Xθ

)2(s−m0)

M0,

with m0 as in (5.44) and whereM0 is defined as in (5.11).
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Now, we want to bring Proposition 5.3.19 into a shape which one can iterate easily.

For this matter, we want to optimise our gain in the exponent. The optimal choice of

D is in general not an easy problem and leads to complications in further calculations.

Nevertheless, there is a reasonable exponent gain one can achieve, namely −ηθ s−2ks−k . This

is reasonable because if λ is close to 1 all terms are of almost equal size and if λ is large

the positive term gets very small and thus can be handled by the tail sum.

Let us first assume λ > 1. Then,

∆ = −η s− 2k

s− k
+
k2(k2 − 1)

2s
λ−D − η s− 2k

s− k
λ−1(1− λ−D)

1− λ−1
,

and we would like ∆ ≤ −η s−2ks−k . Thus, we require(
k2(k2 − 1)

2s
+ η

s− 2k

s− k
λ−1

1− λ−1

)
λ−D ≤ η s− 2k

s− k
λ−1

1− λ−1

or
k2

2η

k2 − 1

s

s− k
s− 2k

λ− 1

λ
+ 1 ≤ λD.

Now, we have

k2 − 1

s

s− k
s− 2k

λ− 1

λ
=

k2 − 1

λk+ 1

λ

λk− 1

λ− 1

λ
=

(λ− 1)(k2 − 1)

λ2k2 − 1
≤ λ− 1

λ2
.

Hence, it suffices to have

D ≥
log
(
k2

2η
λ−1
λ2

+ 1
)

log(λ)
. (5.66)

In the case λ = 1, i.e. s = k(k+ 1), one needs

k2(k2 − 1)

2s
− η s− 2k

s− k
D ≤ 0⇔ D ≥ k2

2η
,

which is recovered from (5.66) in the limit as λ→ 1+.

We are now able to balance the two inequalities in Proposition 5.3.19. We make the

choice Xθ
0 = 4k and use the trivial inequality for 1 ≤ X ≤ X0 and the new inequality

for X ≥ X0. Thus, we have for 1 ≤ X ≤ X0:

Js,k(X) ≤ C log2(2X)δX2s− 1
2
k(k+1)+η

≤ C log2(2X)δX2s− 1
2
k(k+1)+η

(
Xηθ

0 ·X
−ηθ s−2k

s−k
)

≤ C · 2k2+kk
1
2
k2+ 1

2
k · log2(2X)δ+

2λk−1
λk−1 X2s− 1

2
k(k+1)+η ·X−ηθ

s−2k
s−k ,

(5.67)

where we have made use of η ≤ 1
2k(k+ 1). For X ≥ X0, we further need to estimate(

1+
1

Xθ
0

)2(s−m0)

≤
(
1+

1

4k

)2λk2

≤ e
1
2
λk ≤ kk.
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Thus, in this case, we get

Js,k(X) ≤C · 2
3
2
k2+ 11

2
k+1k

1
2
k2+ 25

6
k−2 ·M0

· log2(2X)δ+
2λk−1
λk−1 X2s− 1

2
k(k+1)+η ·X−ηθ

s−2k
s−k .

(5.68)

By comparing the two constants in (5.67) and (5.68), we find that the latter is larger and

thus we conclude the proof of Theorem 5.3.1.

5.3.6 Final Upper Bounds

In this section, we consider a more general system of equations

l∑
i=1

xji −
s∑

i=l+1

xji = Nj , (j = 1, . . . , k),

with integers 1 ≤ xi ≤ X . Let Is,k,l(N ;X) denote its counting function. We shall use

a Hardy–Littlewood dissection into major and minor arcs to establish an asymptotic

formula

Is,k,l(N ;X) ∼ Ss,k,l(N )Js,k,l(N )Xs− 1
2
k(k+1)

with an effective error term, where Ss,k,l(N ) and Js,k,l(N ) are the singular series and

the singular integral, which are given by

Ss,k,l(N ) =
∞∑

q1,...,qn=1

∑
amod q

(ai,qi)=1,i=1,...,k

(q1 · · · · · qk)−sSq(a)lSq(a)
s−l
e

− k∑
j=1

ajNj

qj


and

Js,k,l(N ) =

∫
Rk
I(β)lI(β)

s−l
e

− k∑
j=1

βjNj

Xj

 dβ,

where

Sq(a) =

q∑
n=1

e

 k∑
j=1

ajn
j

qj

 and I(β) =

∫ 1

0
e

 k∑
j=1

βjx
j

 dx.

We achieve this by using a good enough estimate for Js,k(X) in the minor arcs, which

we will get by iterating Theorem 5.3.1. To make our life simpler, we restrict to the case

λ > 1 and think of λ as fixed as in this case we see that D only grows logarithmically in
k2

2η , which, in return, makes the constant smaller.
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We will iterate Theorem 5.3.1 as follows. We fix D and iterate as many times as needed

till we get an exponent η that is too small to apply the theorem with the choice of D we

fixed. For this purpose, we need to reverse engineer the inequality (5.66). We have

k2

2η
· λ− 1

λ2
+ 1 =

k2

2η
· λ− 1

λ2

(
1+

2η

k2
· λ2

λ− 1

)
≤ k2

2η
· λ− 1

λ2

(
1+

k(k+ 1)

k2
· λ2

λ− 1

)
≤ k2

2η
· λ− 1

λ2

(
k(k+ 1)

k2
· λ

2 + λ− 1

λ− 1

)
=
k(k+ 1)

2η
· λ

2 + λ− 1

λ2

≤ 5

4
· k(k+ 1)

2η

(5.69)

as λ ≤ 1
4λ

2 + 1 by the inequality between the arithmetic and geometric mean. Thus, we

are able to apply Theorem 5.3.1 as long as

η ≥ 5

4
· k(k+ 1)

2λD
,

which immediately leads to the following proposition.

Proposition 5.3.20. Let s, k,D ∈N with k ≥ 3 and 2 log(k) ≥ λ = s−k
k2

> 1. Assume that

Js,k(X) ≤ C log2(2X)δX2s− 1
2
k(k+1)+η ∀X ≥ 1,

for some 0 ≤ δ and 0 < η ≤ max
{

1
2k(k+ 1), 54 ·

k(k+1)
2λD−1

}
. Then, we have

Js,k(X) ≤C
[
2

3
2
k2+ 11

2
k+1k

1
2
k2+ 25

6
k−2M0·log2(2X)

2λk−1
λk−1

]log(λ) λk
λk−1

kD+1+1

· log2(2X)δX2s− 1
2
k(k+1)+η′ , ∀X ≥ 1,

for some η′ < 5
4 ·

k(k+1)
2λD

and whereM0 as defined in (5.11).

Proof. If η < 5
4 ·

k(k+1)
2λD

, then the statement is trivial. Otherwise, we are able to apply

Theorem 5.3.1 and we receive an inequality with

η′ = η

(
1− 1

kD+1

λk− 1

λk

)
.

If η′ < 5
4 ·

k(k+1)
2λD

, then we are done otherwise we repeat the process. After at most⌈
kD+1 λk

λk− 1
log(λ)

⌉
≤ kD+1 λk

λk− 1
log(λ) + 1

iterations we are guaranteed to have η′ < 5
4 ·

k(k+1)
2λD

and hence conclude the proof of the

proposition.
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We get the following corollary immediately.

Corollary 5.3.21. Let s, k,D ∈N with k ≥ 3 and 2 log(k) ≥ λ = s−k
k2

> 1. Then, we have

Js,k(X) ≤
[
2

3
2
k2+ 11

2
k+1k

1
2
k2+ 25

6
k−2M0·log2(2X)

2λk−1
λk−1

]log(λ) λk
λk−1

k2 k
D−1
k−1

+D

·X2s− 1
2
k(k+1)+ 5

4
· k(k+1)

2λD , ∀X ≥ 1,

whereM0 as defined in (5.11).

The next step is to get an asymptotic formula as well as an upper bound of the right

order of magnitude. From now on, we restrict ourselves to the case λ = 2, i.e. s = 2k2+ k.

For this purpose, we follow the argument throughout pages 114 to 132 of [ACK04] and

insert Corollary 5.3.21 in the treatment of the minor arcs.

First we bring the estimate in Corollary 5.3.21 into a shape without logarithms. For

X ≥ 7, we have log2(2X) ≤ 2 log(X). Moreover, we have 2k
2k−1 ≤

6
5 . Furthermore, we

have the inequality

log(X)α ≤
(
α

βe

)α
Xβ, ∀α,β > 0,X ≥ e,

as the function α log(log(X)) − β log(X) reaches its maximum at X = e
α
β . Hence, we

conclude for X ≥ 7, that

log2(2X)
4k−1
2k−1

(
log(2) 2k

2k−1
k2 k

D−1
k−1

+D
)

≤

2 ·
4k−1
2k−1

(
log(2) 2k

2k−1k
2 kD−1
k−1 +D

)
5e
4 ·

k(k+1)
2D+1


4k−1
2k−1

(
log(2) 2k

2k−1
k2 k

D−1
k−1

+D
)
X

5
4
· k(k+1)

2D+1

≤
[
2.6 · 2D

k(k+ 1)

(
6

5
log(2)k2

kD − 1

k− 1
+D

)] 11
5

(
6
5
log(2)k2 k

D−1
k−1

+D
)
X

5
4
· k(k+1)

2D+1

holds. Furthermore, we have

6

5
log(2)k2

kD − 1

k− 1
+D ≤ 6

5
log(2)k2

kD − 1

k− 1

(
1+

D
6
5 log(2)k

D+1

)

≤ 6

5
log(2)k2

kD − 1

k− 1

(
1+

5

54 log(2)

)
≤ k2k

D − 1

k− 1

≤ 3

2
kD+1

and
2.6

k(k+ 1)
k2
kD − 1

k− 1
≤ 2.6 · k

k2 − 1
· kD ≤ kD.
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Hence, we may conclude that

log2(2X)
4k−1
2k−1

(
log(2) 2k

2k−1
k2 k

D−1
k−1

+D
)
≤
(
2DkD

) 11
5 (

3
2
kD+1)

X
5
4
· k(k+1)

2D+1 .

Hence, by increasing the constant appropriately we are able to have that the dependency

on X is only X2s− 1
2
k(k+1)+ 5

4
· k(k+1)

2D . We now make use of this inequality in the treatment

of I2 in [ACK04] on page 121 with k1 = k2 and k2 = 2k2 + k. In order to have a power

saving, we need

5

4
· k(k+ 1)

2D
< k2 · ρ = k2 · (8k2(log(k) + 1.5 log(log(k)) + 4.2))−1,

which is equivalent to

10k(k+ 1)(log(k) + 1.5 log(log(k)) + 4.2) < 2D.

Since we have k+ 1 ≤ 4
3k and 1.5 log(log(k)) + 4.2 ≤ 4 log(k) for k ≥ 3, it is sufficient to

have
200

3
k2 log(k) < 2D

or

D =

⌈
2 log(k) + log(log(k)) + 4.2

log(2)

⌉
≤ 2 log(k) + log(log(k)) + 4.2

log(2)
+ 1. (5.70)

Hence, we conclude that

|I2| ≤

[
2

3
2
k2+ 11

2
k+1+Dk

1
2
k2+ 25

6
k−2+DM0

] 33
10
kD+1

· (2k)2k3+11k2 ·X2s− 1
2
k(k+1)−δ (5.71)

for some δ > 0 and where D is given by (5.70) and M0 as defined in (5.11). The rest of

the calculation goes through as in [ACK04] except that one has to increase the constant

to four times the maximum out of k30k
3

and the constant in Equation (5.71). Hence, we

conclude the following theorem.

Theorem 5.3.22. Let k ≥ 3, s ≥ 5k2 + 2k. Furthermore, let X ≥ s10. We have the asymptotic

formula: ∣∣∣Is,k,l(N ;X)−Ss,k,l(N )Js,k,l(N )Xs− 1
2
k(k+1)

∣∣∣ ≤ C ·Xs− 1
2
k(k+1)−δ,

as well as the estimate

Is,k,l(N ;X) ≤ CXs− 1
2
k(k+1),
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5.3 effective vinogradov mean value theorem

where C is the maximum of 4k30k3 and[
2

3
2
k2+ 11

2
k+1+Dk

1
2
k2+ 25

6
k−2+DM0

] 33
10
kD+1

· 4(2k)2k3+11k2 ,

whereM0 as defined in (5.11) and

D =

⌈
2 log(k) + log(log(k)) + 4.2

log(2)

⌉
.
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6
T H E C O V E R I N G E X P O N E N T O F S 3

6.1 introduction

The question about a covering exponent is closely linked to the question of intrinsic

Diophantine approximation. To elucidate this, let us review the classical question about

Diophantine approximation of a real number ξ. The approximation exponent µ(ξ) of ξ

is defined as the supremum of all real numbers µ such that the set

{(p, q) ∈ Z×N||ξ − p
q | < q−µ}

is infinitea. We may define a second exponent µ̂(ξ), which will tell us more about how

sparse the above set is. The exponent µ̂(ξ) is defined as the supremum of all real num-

bers such that for every sufficiently large Q the set

{(p, q) ∈ Z×N|q ≤ Q∧ |ξ − p
q | < Q−µ}

is non-empty. Clearly, we have the inequality µ̂(ξ) ≤ µ(ξ). We may take this one step

further and ask about a uniform exponent µ̂ which we define as the supremum of the

set

{µ ∈ R|∃N ∈N : ∀Q ≥ N : ∀ξ ∈ [0, 1] : ∃(p, q) ∈ Z×N : q ≤ Q∧ |ξ − p
q | < Q−µ}.

Equivalently, it is the supremum of all numbers µ such that for large enough Q we have

⋃
(p,q)∈Z×N

q≤Q

B( pq ,Q
−µ) ⊇ [0, 1],

here B(x, r) denotes the open ball of radius r around x. The covering exponent

K([0, 1],Q) now represents a normalised version of µ̂ as it shall take into account how

many balls we had to use. In this case, the number of balls is of the order Q2 and the

covering exponent is defined as 2/µ̂ and we easily find K([0, 1],Q) = 2.

a Usually one forces the distance to be positive, but for the sake of comparison we allow 0.
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6.1 introduction

In the general setting, we are given an oriented compact smooth Riemannian manifold

M, which usually is given by a compact subset of all real solutions to a set of polynomial

equations, and a dense subset Q together with a height function H : Q → R+
0 such that

the sets H−1([0,Q]) are all finite for every Q ∈ R+
0 . For example, Q might be taken to be

the set of all rational points (or S-integers) on M and H the usual height function. Set

V (Q) to be supremum of the volume of all balls B(ξ, r) ⊆M which do not contain any

point of H−1([0,Q]). Then, the covering exponent is defined as

K(M,Q,H) = lim sup
Q→∞

log |H−1([0,Q])|
log vol(M)/V (Q)

. (6.1)

The covering exponents satisfy trivially K(M,Q,H) ≥ 1 and measure on an exponential

level how far the set Q is from perfect equidistribution.

The work on covering exponents gained a lot of popularity after Sarnak, in a letter

addressed to Aaronson and Pollington [Sar15b], pointed out the connection between the

covering exponent of S3 and efficient quantum computing on 1-qubits via the isomorph-

ism S3 ∼= SU2. In the same letter, he mentions that a result of Kleinbock–Merrill [KM15]

implies K(Sn,Sn(Q),H) = 2 for n ≥ 1, where H is the usual height function. If one

wishes to get a smaller covering exponent one needs to consider sparser subsets of the

rationals. Sarnak considers the set of {∞, 5}-integers and shows amongst other things

that
K(S2,S2(Z[ 15 ]),H) ≤ 2,

4
3 ≤K(S3,S3(Z[ 15 ]),H) ≤ 2.

Here, the lower bound 4
3 comes from a Diophantine repulsion property, which forces a

large annulus around (0, 0, 0, 1) with no solutions of small denominator. Heuristically,

the rational points are the worst approximable numbers and hence Sarnak goes on and

conjectures that indeed K(S3,S3(Z[ 15 ]),H) = 4
3 .

Sardari [Sar15a] takes this one step further and considers only those rational points

with a given denominator. In the case of Sn, this clearly constitutes a finite set and hence

can’t be dense. Therefore, the definition (6.1) needs some tweaking. Let us assume that

M is given by the 1-level set of a single homogeneous polynomial of degree d with

integer coefficients. LetMN = N
1
d ·M denote the N -level set,MN (Z) the set of points

ofMN with integer coordinates, and V (N) the volume of the largest ball B(ξ, r) ⊆MN
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that does not contain a point ofMN (Z). Then, the integer covering exponent is defined

as

K(M,Z,B) = lim sup
B3N→∞

log |MN (Z)|
log vol(MN )/V (N)

, (6.2)

here B ⊆ N is a set that avoids certain “bad” integers. Say for example B = 2N− 1 in

the case of S3. In his paper, Sardari [Sar15a] manages to prove (amongst other things)

K(Sn,Z,N) = 2− 2
n , ∀n ≥ 4,

and

K(S3,Z, 2N− 1) ≤ 2. (6.3)

For the sake of completeness, we shall also state a result of Duke–Schulze-Pillot [DSP90],

which implies

K(S2,Z, 4N + 1) ≤ 203

4
.

This follows [DSP90, Lemmata 3 and 5] with the choice of a bump function that approx-

imates a ball of radius δ. We should remark that such a function satisfies condition (iii)

of [DSP90, Lemma 1] and P0 � δ2.

In section 6.3, we reproduce Sardari’s result and extend it to show that the twis-

ted Linnik conjecture 4.0.2 implies K(S3,Z, 2N − 1) = 4
3 , from which Sarnak’s con-

jecture K(S3,S3(Z[ 15 ]),H) = 4
3 follows. In section 6.2, we shall give a short proof

of K(S3,Z, 2N− 1) ≤ 7
3 based on the theory of automorphic forms, followed up by

Sarnak’s argument for K(S3,Z[ 15 ]) ≤ 2, which also shows K(S3,Z, 2N− 1) ≤ 2. In

section 6.4, we shall compare the two approaches and discuss how they may be unified.

6.2 an automorphic approach

Let ω : R+
0 → [0, 1] be a smooth bump function with Suppω ⊆ [0, 1] and ω([0, 12 ]) = {1}.

Further, let ξ ∈ S3 be a point and ε > 0 a parameter. Our aim is to prove

∑
x∈Z4

‖x‖22=N

ω

(
‖x/
√
N − ξ‖2
ε

)
> 0 (6.4)

for an ε as small as possible. We note here that ‖x− ξ‖22 = 2(1− 〈x, ξ〉) as a function in

x ∈ S3 depends only on the angle cos(θ) = 〈x, ξ〉. Therefore, it makes sense to expand
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6.2 an automorphic approach

in terms of spherical polynomials, where we chose ξ as the north pole. The spectral

expansion (see [Iwa97, Chapter 9]) reads

ω

(
‖x− ξ‖2

ε

)
=
∞∑
n=0

ωnUn(〈x, ξ〉), (6.5)

here

Un(cos(θ)) =
sin((n+ 1)θ)

sin(θ)

are the Chebyshev polynomials of the second kind and

ωn =

∫
S3

ω

(
‖x− ξ‖2

ε

)
Un(〈x, ξ〉)dS3x

=
2

π

∫ π

0
ω

(√
2

ε

√
1− cos(θ)

)
sin(θ)2Un(cos(θ))dθ

=
2

π

∫ 1

−1
ω

(√
2

ε

√
1− x

)
Un(x)

√
1− x2dx.

(6.6)

We shall list a few properties of the Chebyshev polynomials of the second kind, which

we shall need. They are the orthogonal polynomials with respect to the inner product

〈f , g〉U =
2

π

∫ 1

−1
f(x)g(x)

√
1− x2dx,

which is what we secretly exploited to get the expansion (6.5) (as well as the Stone–

Weierstrass Theorem). Moreover, we have

∆S3Un = −n(n+ 2)Un, (6.7)

Un(−x) = (−1)nUn(x), (6.8)

|Un(cos(θ))| ≤ min{n+ 1, | sin(θ))|−1}, (6.9)

where ∆S3 denotes the Laplace–Beltrami operator on S3.

Returning to (6.4), we find
∞∑
n=0

ωn
∑
x∈Z4

‖x‖22=N

Un

(〈
x

‖x‖2
, ξ

〉)
(6.10)

by inserting the spectral expansion (6.5). By pairing up x with −x, we find using (6.8)

that the terms with n odd vanish. The term with n = 0 will be our main term. By (6.6)

and U0 ≡ 1, we have

ω0

∑
x∈Z4

‖x‖22=N

U0

(〈
x

‖x‖2
, ξ

〉)
= ω0r4(N)� ε3r4(N). (6.11)

It remains to analyse the terms with n > 0 even. We start by bounding ωn.
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Lemma 6.2.1. Let n > 0 and A ∈N0. Then, we have the bound

ωn �A ε
2min{1, εn}(εn)−2A

Proof. We have

(−n(n+ 2))Aωn =

∫
S3

ω

(
‖x− ξ‖2

ε

)
∆AS3Un(〈x, ξ〉)dS3x

=

∫
S3

∆AS3ω

(
‖x− ξ‖2

ε

)
Un(〈x, ξ〉)dS3x

≤ 2

π

∫ π

0

∣∣∣∣∣∆AS3ω

(√
2

ε

√
1− cos(θ)

)∣∣∣∣∣ sin(θ)2min{n, sin(θ)−1}dθ

�A ε
−2A

∫ ε

0
sin(θ)2min{n, sin(θ)−1}dθ

�A ε
2min{1, εn} · ε−2A,

where we have made use of the self-adjointness of the Laplace–Beltrami operator and

(6.9).

In order to bound ∑
x∈Z4

‖x‖22=N

Un

(〈
x

‖x‖2
, ξ

〉)
,

we shall relate it to a Fourier coefficient F̂n(N) of a function Fn : H → C, which we

define as

Fn(z) =
∑
x∈Z4

‖x‖n2Un
(〈

x

‖x‖2
, ξ

〉)
e

(
1

2
‖x‖22z

)

=
∞∑
m=1

F̂n(m)e

(
1

2
mz

)
.

(6.12)

We shall require a lemma on Fourier transforms.

Lemma 6.2.2. Let P be a polynomial in d variables. Then, we have

F
[
P (x)e−π‖x‖

2
2

]
(ω) =

∫
Rd
P (x)e−π‖x‖

2
2e−2πi〈x,ω〉dx

=

[
exp

(
∆Rd

4π

)
P

]
(−iω) · e−π‖ω‖22 ,

here ∆Rd denotes the Laplace–Beltrami operator on Rd.

Proof. By using linearity, it suffices to prove this for monomials. Further, using Fubini it

suffices to prove this in the case d = 1. We shall prove the claim inductively in the degree
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6.2 an automorphic approach

m of P . If m ≤ 0, then this follows from the well-known equality F [e−πx2 ](ω) = e−πω
2
.

For the induction step, we may now assume that P (0) = 0 and write P (x) = xQ(x). We

have

F [xQ(x)e−πx2 ](ω) = − 1

2πi

d

dω
F [Q(x)e−πx2 ](ω)

= − 1

2πi

d

dω

[
exp

(
∆R

4π

)
Q

]
(−iω) · e−πω2

=
1

2π

[
d

dx
exp

(
∆R

4π

)
Q

]
(−iω)e−πω2

+
ω

i

[
exp

(
∆R

4π

)
Q

]
(−iω)e−πω2

=

[
x exp

(
∆R

4π

)
Q+

1

2π

d

dx
exp

(
∆R

4π

)
Q

]
(−iω)e−πω2

=

[
exp

(
∆R

4π

)
P

]
(−iω)e−πω2

.

As a Corollary, we immediately find that

F
[
‖x‖n2Un

(〈
x

‖x‖2
, ξ

〉)
e−π‖x‖

2
2

]
(ω) = (−i)n‖ω‖n2Un

(〈
ω

‖ω‖2
, ξ

〉)
e−π‖ω‖

2
2 , (6.13)

since

∆S3Un(〈x, ξ〉) = −n(n+ 2)Un(〈x, ξ〉)⇔ ∆R4‖x‖n2Un
(〈

x

‖x‖2
, ξ

〉)
= 0.

Poisson summation now tells us that for λ ∈ R4 and t > 0 we have

∑
x∈Z4

‖x+ λ‖n2Un
(〈

x+ λ

‖x+ λ‖2
, ξ

〉)
e−πt‖x+λ‖

2
2

= (−i)nt−n−2
∑
ω∈Z4

‖ω‖n2Un
(〈

ω

‖ω‖2
, ξ

〉)
e−π

1
t
‖ω‖22e2πi〈ω,λ〉. (6.14)

Two values of λ are of importance to us, namely λ = 0 and λ = 1
2

. By analytic continu-

ation in the variable it, the former yields

Fn(z) = −z−n−2Fn
(
−1

z

)
, ∀z ∈H, (6.15)

or simply Fn|n+2

(
0 −1
1 0

)
= −Fn, and the latter yields

z−n−2Fn

(
1− 1

z

)
= −

∑
x∈Z4+ 1

2

‖x‖n2Un
(〈

x

‖x‖2
, ξ

〉)
e

(
1

2
‖x‖22z

)
, ∀z ∈H. (6.16)

Equation (6.15) together with Fn(z + 2) = Fn(z) ⇔ Fn|n+2 ( 1 2
0 1 ) = Fn, which can be

easily seen from the definition (6.12), implies that Fn is modular of weight n+ 2 with

respect to the theta subgroup Γθ, as Γθ is generated by the matrices −I , ( 1 2
0 1 ), and

(
0 −1
1 0

)
.
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The theta subgroup has two cusp∞ and 1. Hence, the expansions (6.12) and (6.16) show

that Fn is a cusp form (recall n > 0).

We now intend to expand Fn in terms of an orthonormal basis of Hecke eigenforms.

To this end, we note that Gn(z) = 2
n+2
2 Fn(2z) = (F |n+2A2)(z) is a cusp form of weight

n+ 2 with respect to Γ0(4) and trivial character. Since Γ0(4) is generated by −I, ( 1 1
0 1 )

and ( 1 0
4 1 ), this follows from the two matrix identities2 0

0 1


1 1

0 1


2 0

0 1


−1

=

1 2

0 1

 ∈ Γθ

and2 0

0 1


1 0

4 1


2 0

0 1


−1

=

1 0

2 1

 =

0 −1

1 0


1 2

0 1


−10 −1

1 0


−1

∈ Γθ.

We shall require a bound on the Petersson norm of Hn.

Proposition 6.2.3. Let n > 0 be an even integer. Then, we have

‖Gn‖2 =
∫
FΓ0(4)

|Gn(z)|2yn+2dxdy

y2
�ε (2π)

−nΓ(n+ 2) · n2+ε.

Proof. We have ∫
FΓ0(4)

|Gn(z)|2yn+2dxdy

y2
=

∫
FΓ0(4)

|Fn(2z)|2(2y)n+2dxdy

y2

=

∫
FΓ(2)

|Fn(z)|2yn+2dxdy

y2

= 2

∫
FΓθ

|Fn(z)|2yn+2dxdy

y2
.

We further bound the latter by

2

(∫ ∞
√
3
2

∫ 2

0
|Fn(z)|2yndxdy+

∫ ∞
√
3

2

∫ 1

0

∣∣∣∣z−n−2Fn(1− 1

z

)∣∣∣∣2 yndxdy
)

= 2(I1 + I2), say.
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We shall only deal with I1 as I2 may be treated in the same fashion. We insert the

Fourier expansion (6.12) and integrate over x. We find

I1 =
∫ ∞
√
3

2

∑
m,l∈Z4

‖m‖22=‖l‖22

‖m‖n2Un
(〈

m

‖m‖2
, ξ

〉)
‖l‖n2Un

(〈
l

‖l‖2
, ξ

〉)
e−πy(‖m‖

2
2+‖l‖22)yndy

=

∫ ∞
√
3

2

∞∑
k=1

kne−2πky

 ∑
m∈Z4

‖m‖22=k

Un

(〈
m

‖m‖2
, ξ

〉)
2

yndy

≤
∫ ∞
√

3
2

∞∑
k=1

kne−2πky

 ∑
m∈Z4

‖m‖22=k

min

{
n+ 1,

‖m‖2√
‖m‖22 − 〈m, ξ〉2

}
2

yndy.

Let us first deal with the part where k ≥ 10n. In this case, we have that the inner sum is

bounded by

n2
∑
k≥10n

kn+3e−2πky � n2
∑
k≥10n

nn+3(2πy)−n−3e−ne−πky

� nn+5(2πe)−ny−n−3e−10πny.

Hence, the contribution from k ≥ 10n towards I1 is bounded by

nn+5(2πe)−n
∫ ∞
√
3

2

e−10πnyy−3dy � nn+5(2πe)−ne−10n. (6.17)

This is sufficient. For k ≤ 10n, we interchange the integral and summation in I1. We

further extend the integral all the way down to 0 and find that the contribution is at

most

2(2π)1−nΓ(n)
10n∑
k=1

k

 ∑
m∈Z4

‖m‖22=k

min

{
n,

‖m‖2√
‖m‖22 − 〈m, ξ〉2

}
2

= 2(2π)1−nΓ(n)

(
10nA(10n)−

10n−1∑
k=1

A(k)

)
, (6.18)

where

A(X) =
∑
k≤X

 ∑
m∈Z4

‖m‖22=k

min

{
n,

‖m‖2√
‖m‖22 − 〈m, ξ〉2

}
2

.

It suffices to bound A(X) from above. For this matter, we need to borrow two proposi-

tions from the geometry of numbers.
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Proposition 6.2.4 (Minkowski’s second Theorem). Let K ⊆ Rn be a closed convex centrally

symmetric set of positive volume. Let Λ ⊂ Rn be a lattice and further let λ1 ≤ λ2 ≤ · · · ≤ λn

be the successive minima of K on Λ. Then, we have

2n

n!
vol(Rn/Λ) ≤ λ1λ2 · · ·λn vol(K) ≤ 2n vol(Rn/Λ).

Proposition 6.2.5. Let K ⊆ Rn be a closed convex centrally symmetric set of positive volume.

Let Λ ⊂ Rn be a lattice and further let λ1 ≤ λ2 ≤ · · · ≤ λn be the successive minima of K on

Λ. Then, we have

|K ∩Λ| ≤
n∏
i=1

(
1+

2i

λi

)
.

Proof. See [BHW93, Prop. 2.1].

In order to bound A(X), we partition the points m into sets of the type B(R), which

are defined as follows

m ∈ B(R)⇔ R ≤ ‖m‖2√
‖m‖22 − 〈m, ξ〉2

≤ 2R. (6.19)

We shall make a change of variables. Extend e1 = ξ to an orthonormal basis e1, e2, e3, e4

of R4 and set m̂i = 〈m, ei〉. Then, we see that the condition (6.19) implies

m̂2
2 + m̂2

3 + m̂2
4 ≤
‖m‖22
R2

. (6.20)

Fix a k and consider all points m ∈ B(R) with ‖m‖22 = k. They are 1-separated. Further

note, that the cylinder (6.20) intersects each ball of radius 1
2 around a point m ∈ B(R)

with ‖m‖22 = k with a (uniform) proportion of its volume. Hence, we deduce

∣∣{m ∈ Z4|‖m‖22 = k and m ∈ B(R)
}∣∣� min

{
k1+o(1), 1+

k
3
2

R3

}
. (6.21)

We are now going to refine this estimate as k varies in an interval [M , 2M ]. In this case,

we have the conditions

m̂2
1 ≤ 2M and m̂2

2 + m̂2
3 + m̂2

4 ≤
‖m‖22
R2

. (6.22)

This defines a centrally symmetric cylinder K. By Proposition 6.2.5, the number of points

m inside K is bounded by

� 1

λ1
+

1

λ1λ2
+

1

λ1λ2λ3
+

1

λ1λ2λ3λ4
.
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Clearly, we have λ1 �M−
1
2 and λ1λ2λ3λ4 �M−2R3 by Proposition 6.2.4. We also claim

λ1λ2 � M−1R and λ1λ2λ3 � M−
3
2R2. Let us illustrate this for λ1λ2. Let v1,v2 be two

linearly independent vectors for which the second successive minima is attained. Then,

Zv1 + Zv2 is a lattice with co-volume at least 1 and vol(K ∩ (Rv1 + Rv2)) � MR−1

and hence by Proposition 6.2.4 we have λ1λ2 � M−1R. The bound λ1λ2λ3 � M−
3
2R2

follows from the same considerations. Thus, we find

∣∣{m ∈ Z4|M ≤ ‖m‖22 ≤ 2M and m ∈ B(R)
}∣∣�M

1
2 +

M2

R3
. (6.23)

We shall remark here that the bounds (6.21) and (6.23) still hold if we replace the set

B(R) with the set C(R), where

m ∈ C(R)⇔ R ≤ ‖m‖2√
‖m‖22 − 〈m, ξ〉2

.

We shall make use of this when R ≥ n. From Cauchy–Schwarz, it follows that

A(2M)−A(M) =
∑

M≤k≤2M

 ∑
m∈Z4

‖m‖22=k

min

{
n,

‖m‖2√
‖m‖22 − 〈m, ξ〉2

}
2

�
∑

M≤k≤2M

blog2(n)c∑
i=0

µi + µ



blog2(n)c∑
i=0

22i

µi

 ∑
‖m‖22=k
m∈B(2i)

1


2

+
n2

µ

 ∑
‖m‖22=k
m∈C(n)

1


2 (6.24)

for some positive weights µi,µ, which we shall choose in due time. Equations (6.21) and

(6.23) imply

∑
M≤k≤2M

 ∑
‖m‖22=k
m∈B(R)

1


2

� min

{
M

1
2 +

M
7
2

R6
,M

3
2
+o(1) +

M3+o(1)

R3

}
.

Hence, (6.24) is further bounded by

blog2(n)c∑
i=0

µi + µ


b 16 log2(M)c∑

i=0

22i

µi

M3+o(1)

23i
+

blog2(n)c∑
i=b 1

6
log2(M)c+1

22i

µi

(
M

1
2 +

M
7
2

26i

)
+

blog2(n)c∑
i=0

µi + µ

 n2

µ

(
M

1
2 +

M
7
2

n6

)
. (6.25)
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6.2 an automorphic approach

We make the following choices for the weights: µ = n ·M
1
4 and

µi =



M
3
2 2−

1
2
i, 0 ≤ i ≤ 1

6 log2(M),

M
7
4 2−2i, 1

6 log2(M ) < i ≤ 1
2 log2(M),

M
1
4 2i, 1

2 log2(M ) < i ≤ blog2(n)c.

We find that for M � n we have

A(2M)−A(M)�M3+o(1) + n2M
1
2

and hence A(10n)� n3+o(1), from which the Proposition follows.

Corollary 6.2.6. Let N > 0 be an odd integer and n > 0 be an even integer. Then, we have

|F̂n(N)| � n
3
2
+o(1)N

n+1
2

+o(1).

Proof. Let Bn+2 be the Hecke basis (3.52) of weight n+ 2 for Γ0(4). We have

F̂n(N) = 2−
n
2
−1Ĝn(N)

= 2−
n
2
−1

∑
f∈Bn+2

〈Gn, f〉f̂(N)

� (2π)
n
2

Γ(n+ 2)
1
2

N
n+1
2

+o(1)
∑

f∈Bn+2

|〈Gn, f〉|

� (2π)
n
2

Γ(n+ 2)
1
2

N
n+1
2

+o(1)|Bn+2|
1
2 ‖Gn‖

� n
3
2
+o(1)N

n+1
2

+o(1).

Combining everything, that is (6.10), (6.11), and Lemma 6.2.1, we find

∑
x∈Z4

‖x‖22=N

ω

(
‖x/
√
N − ξ‖2
ε

)
= ε3r4(N) +O

(
ε−

1
2
+o(1)N

1
2
+o(1)

)
.

In particular, we find ∑
x∈Z4

‖x‖22=N

ω

(
‖x/
√
N − ξ‖2
ε

)
> 0
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6.2 an automorphic approach

as soon as ε ≥ N−
1
7
+δ, for a δ > 0. This shows K(S3,Z, 2N− 1) ≤ 7

3 . This argument

is slightly inefficient as we use an L2-decomposition in two different spaces. It is more

efficient to stay in the realm of harmonic polynomials and use the theory of Hecke

operators there. This is Sarnak’s argument [Sar15b]. In order to describe the argument,

we shall identify S3 with the quaternions of norm 1. Let Q(Z) = Z + Zi+ Zj + Zk

denote the integer quaternions. As in [LPS87], we can define the Hecke operators on

L2(S3) for m odd by

(Tmf)(x) =
1

8

∑
α∈Q(Z)
‖α‖22=m

f

(
α

‖α‖2
·x
)
.

They are self-adjoint operators which commute with the Laplace–Beltrami operator ∆S3 .

Moreover, they satisfy

TmTl = Tml = TlTm, (m, l) = 1,

and

TmTl =
∑
d|(m,l)

d · Tml
d2
.

Since the −n(n+ 2)-eigenspace of L2(S3) is finite-dimensional, we simultaneously diag-

onalise this space and find an orthonormal basis of eigenfunctions φj . Let λj(m) denote

the eigenvalue of φj with respect to Tm. By the same arguments as in [LPS87], we find

|λj(m)| � m
1
2
+o(1) for m odd. We shall briefly sketch this argument. As before we can

build a holomorphic cusp form F (z) from f(x), a harmonic polynomial of degree n. It

turns out that this map commutes with the Hecke operators in the sense that the mod-

ular form attached to (Tmf)(x) is the same as m1− k
2 (F |n+2Tm)(z) for m odd. Hence,

the bound for λj(m) follows from Deligne bound for the eigenvalues of holomorphic

newforms.

Moving on, we claim that we have the following expansion

Un(〈x, ξ〉) =
1

n+ 1

∑
j

φj(ξ)φj(x). (6.26)

We start with the L2-expansion

Un(〈x, ξ〉) =
∑
j

µj(ξ)φj(x),

with µj(ξ) = 〈Un(〈·, ξ〉),φj〉. We compute this integral using spherical coordinates with

ξ being the north pole. By integrating first over the variables different from arccos(〈x, ξ〉),

we see that we leave Un(〈·, ξ〉) invariant and we just average φj along those variables.
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6.3 a circle-method approach

The resulting function is an eigenfunction of ∆S3 with eigenvalue −n(n+ 2) that is rota-

tionally symmetric around ξ and thus is a multiple of Un(〈·, ξ〉). One easily checks that

the scaling factor is φj(ξ)/(n+ 1) and hence µj(ξ) = φj(ξ)/(n+ 1). As a consequence

we find

1 = ‖Un(〈·, ξ〉)‖22 =
∑
j

|µj(ξ)|2 =
∑
j

|φj(ξ)|2

(n+ 1)2
, ∀ξ ∈ S3.

We conclude∑
x∈Z4

‖x‖22=N

Un

(〈
x

‖x‖2
, ξ

〉)
=

1

n+ 1

∑
j

(TNφj)(1) · φj(ξ)

=
1

n+ 1

∑
j

λj(N)φj(1)φj(ξ)

� N
1
2
+o(1)

n

∑
j

|φj(1)|2
 1

2
∑

j

|φj(ξ)|2
 1

2

� n ·N
1
2
+o(1).

This, in turn, yields

∑
x∈Z4

‖x‖22=N

ω

(
‖x/
√
N − ξ‖2
ε

)
= ε3r4(N) +O

(
εo(1)N

1
2
+o(1)

)

and consequently K(S3,Z, 2N− 1) ≤ 2.

6.3 a circle-method approach

In this section, we illustrate a circle-method approach to the problem based on the

smooth delta symbol circle method 5.2. Building on the work of Sardari [Sar15a], who

used this approach to show K(S3,Z, 2N − 1) ≤ 2 and K(Sn,Z,N) = 2 − 2
n for all

n ≥ 4, we shall establish K(S3,Z, 8N + 4) = 4
3 under the assumption that the twisted

Linnik–Selberg Conjecture on Kloosterman sums 4.0.2 holds. The subsequent work is

taken from a collaboration of the author with Browning and Kumaraswamy [BKS17] to

which we all contributed equally.

In contrast to the automorphic approach, we shall make use of the ambient space R4.

However, we shall choose a weight function that approximates an ε-ball on the sphere S3.

We do this by choosing a weight function which limits the to S3 normal direction. Let
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6.3 a circle-method approach

w0 : R→ R≥0 be a smooth weight function with unit mass, such that Supp(w0) = [−1, 1].

We will work with the weight function w : R4 → R≥0, given by

w(x) = w0

(
‖x− ξ‖2

ε

)
w0

(
2ξ · (x− ξ)

ε2

)
. (6.27)

Our aim will be to show

Σ(w) =
∑
x∈Z4

‖x‖22=N

w

(
x√
N

)
> 0,

for any N ∈ 8N+ 4 large enough. More precisely, we shall prove the following Theorem.

Theorem 6.3.1. Assume Conjecture 4.0.2. Then, we have

Σ(w) =
ε3Nσ∞S

2
+O

(
ε4N1+o(1) + ε

5
2N

3
4
+o(1) + εN

1
2
+o(1)

)
,

where σ∞ � 1 is the real density of solutions and S� No(1) is the product of non-archimedean

local densities, given by

S =
∏
p

σp, σp = lim
k→∞

p−3k#{x ∈ (Z/pkZ)4 : F (x) ≡ N mod pk}. (6.28)

As a consequence one finds K(S3,Z, 8N + 4) = 4
3 . We shall show this by making use

of the smooth delta symbol circle method 5.2.1. We find

Σ(w) =
cQ
Q2

∞∑
q=1

∑
c∈Z4

1

q4
Sq(c)Iq(c), (6.29)

where
Sq(c) =

∑∗

amod q

∑
bmod q

eq
(
a
(
‖b‖22 −N

)
+ b · c

)
,

Iq(c) =

∫
R4

w

(
x√
N

)
h

(
q

Q
,
‖x‖22 −N

Q2

)
eq(−c ·x) dx.

(6.30)

Our specific choice of ω will allow us to take Q = ε
√
N , which we shall fix. We shall

also assume that N ≥ ε−
1
2 in order to guarantee Q ≥ 1. In Section 6.3.1, we shall

explicitly evaluate the sum Sq(c) using Gauss sums. Next, in Section 6.3.2, we shall

study the oscillatory integrals Iq(c) using stationary phase. Finally, in Section 6.3.6, we

shall combine the various estimates and complete the proof of Theorem 6.3.1.
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6.3 a circle-method approach

6.3.1 Gauss Sums and Kloosterman Sums

In this section, we explicitly evaluate the exponential sum Sq(c) in (6.30), for c ∈ Z4

and relate it to the Kloosterman sum S(m,n; c) in (3.11). The latter sum satisfies the

well-known Weil bound

|S(m,n; c)| ≤ τ (c)
√
(m,n, c)

√
c, (6.31)

where τ is the divisor function.

Recalling that N ∈ 4N, it will be convenient to write N = 4N ′ for N ′ ∈N. We have

Sq(c) =
∑∗

a mod q

eq(−4aN ′)
4∏
i=1

G(a, ci; q), (6.32)

where

G(s, t; q) =
∑

b mod q

eq
(
sb2 + tb

)
,

for given non-zero integers s, t, q such that q ≥ 1. The latter sum is classical and may be

evaluated. Let

δn =


0, if n ≡ 0 mod 2,

1 if n ≡ 1 mod 2,

εn =


1, if n ≡ 1 mod 4,

i, if n ≡ 3 mod 4.

The following result is recorded in [BB12, Lemma 3], but goes back to Gauss.

Lemma 6.3.2. Suppose that (s, q) = 1. Then,

G(s, t; q) =



εq
√
q
(
s
q

)
e
(
−4st2

q

)
if q is odd,

2δtεv
√
v
(
2s
v

)
e
(
−8st2

v

)
if q = 2v, with v odd,

(1+ i)ε−1s (1− δt)
√
q
( q
s

)
e
(
− st2

4q

)
if 4 | q.

Our analysis of Sq(c) now differs according to the 2-adic valuation of q. In each case,

we shall be led to an appearance of the Kloosterman sum (3.10).

Suppose first that q ≡ 1 mod 2. By substituting Lemma 6.3.2 into (6.32), we directly

obtain

Sq(c) = q2
∑∗

a mod q

eq(−4aN ′ − 4a‖c‖22) = q2S(N ′, ‖c‖22; q),

since S(A, tB; q) = S(tA,B; q) for any t ∈ (Z/qZ)∗.
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If q ≡ 2 mod 4, then we write q = 2v, for odd v. This time, we obtain

Sq(c) = 24δc1c2c3c4v
2
∑∗

a mod q

eq(−4aN ′)ev(−8a‖c‖22)

= 4δc1c2c3c4q
2S(N ′, ‖c‖22/4; v)

= 4δc1c2c3c4q
2S(2N ′, ‖c‖22/2; q),

since 4 | ‖c‖22, when all the ci are odd.

If q ≡ 0 mod 4, it follows from Lemma 6.3.2 that

Sq(c) = −4(1− δc1) . . . (1− δc4)q2
∑∗

a mod q

eq(−4aN ′)e4q(−a‖c‖22).

Thus, in this case, we find that

Sq(c) =


0 if 2 - c,

−4q2S(N , ‖c′‖22; q) if c = 2c′ for c′ ∈ Z4.

6.3.2 Oscillatory Integrals

Recall the definition (6.30) of Iq(c), in which w is given by (6.27). We make the change

of variables x =
√
Nx′ and x′ = ξ+ εz. This leads to the expression

Iq(c) = N2

∫
R4

w (x′) h

(
q

Q
,
‖x′‖22 − 1

ε2

)
e q√

N
(−c ·x′) dx′

= ε4N2e q√
N
(−c · ξ)

∫
R4

w0(‖z‖2)w0

(
2ξ · z
ε

)
h

(
q

Q
,
y(z)

ε

)
e q

ε
√
N
(−c · z) dz,

where y(z) = 2ξ · z + ε‖z‖22. Let r = q/Q and v = r−1c. Then, we have

Iq(c) = ε4N2er(−ε−1c · ξ)I∗r (v), (6.33)

where

I∗r (v) =

∫
R4

w0(‖x‖2)w0

(
2ξ ·x
ε

)
h

(
r,
y(x)

ε

)
e(−v ·x) dx. (6.34)

In particular, we have I∗r (v) = O(ε/r), since h(r, y)� r−1 and the region of integration

has measure O(ε). Due to the change of variable, it will come in handy to define some

new notation. For a vector b ∈ R4, we define b̂i by b̂i = b · ei, where ei is a fixed

orthonormal basis with e4 = ξ. Thus, we have b =
∑4

i=1 b̂iei.
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6.3.3 Easy Estimates

Our attention now shifts to analysing I∗r (v) for r � 1 and v ∈ R4. Let x ∈ R4 such that

w0(‖x‖2)w0(2ξ ·x/ε) 6= 0. Then,

y(x)

ε
=

2ξ ·x+ ε‖x‖22
ε

< 2.

Put v(t) = w0(t/6). Then, v(y(x)/ε) � 1 whenever w0(‖x‖2)w0(2ξ · x/ε) 6= 0. We may

now write

I∗r (v) =
1

r

∫
R4

w3(x)f

(
y(x)

ε

)
e(−v ·x) dx,

where f(y) = v(y)rh(r, y) and

w3(x) =
w0(‖x‖2)w0(2ξ ·x/ε)

v(y(x)/ε)
. (6.35)

Let p(t) = F [f ](t) be the Fourier transform of f . Then, the proof of [HB96, Lemma 17]

shows that

p(t)�j r(r|t|)−j , (6.36)

for any j > 0. We may therefore write

I∗r (v) =
1

r

∫
R

p(t)

∫
R4

w3(x)e

(
t
y(x)

ε
− v ·x

)
dx dt. (6.37)

Building on this, we proceed by establishing the following result.

Lemma 6.3.3. Let c ∈ Z4, with c 6= 0. Then,

Iq(c)�j
ε5N2Q

q
min
i=1,2,3

{
|ĉi|−j , (ε|ĉ4|)−j

}
,

for any j > 0.

This result corresponds to [Sar15a, Lemma 6.1]. Since maxi |ĉi| � ‖c‖2, it follows that

Iq(c)�j
ε5N2Q

q
(ε‖c‖2)−j ,

for any j > 0. In this way, for any δ > 0, Lemma 6.3.3 implies that there is a negli-

gible contribution to (6.29) from c such that either of the inequalities ‖c‖2 > N δ/ε

or maxi=1,2,3 {|ĉi|, ε|ĉ4|} > N δ hold. Thus, in (6.29), the summation over c can hence-

forth be restricted to the set C, which is defined to be the set of c ∈ Z4 for which

maxi=1,2,3 {|ĉi|, ε|ĉ4|} ≤ N δ. It follows from [Sar15a, Lemma 6.3] that #C = O(ε−1N4δ).
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Proof of Lemma 6.3.3. We make the change of variables x =
∑4

i=1 uiei in (6.37). Let v =∑4
i=1 v̂iei, where v̂i = v · ei. Then, on recalling (6.35), we find that

I?r (v) =
1

r

∫
R

p(t)

∫
R4

w3

(
4∑
i=1

uiei

)
e

(
ty(
∑4

i=1 uiei)

ε
−u · v̂

)
du dt

=
1

r

∫
R

p(t)

∫
R4

w0(‖u‖2)w0(2u4/ε)
v((2u4 + ε‖u‖22)/ε)

e (F (u)) du dt,

where F (u) = t
ε

{
2u4 + ε‖u‖22

}
−u · v̂. We have

∂F (u)

∂ui
=


2tui − v̂i if 1 ≤ i ≤ 3,

2tu4 − v̂4 + 2t
ε if i = 4.

The proof of the lemma now follows from repeated integration by parts in conjunction

with (6.36), much as in the proof of [HB96, Lemma 19]. Thus, when i ∈ {1, 2, 3}, integra-

tion by parts with respect to ui readily yields

I∗r (v)�j
ε

r

{
r|v̂i|1−j + r1−j |v̂i|1−j

}
�j εr

−j |v̂i|1−j ,

for any j > 0, since r � 1. Likewise, integrating by parts with respect to u4, we get

I∗r (v)�j
ε

r

{
r(ε|v̂4|)1−j + r1−j(ε|v̂4|)1−j

}
�j εr

−j(ε|v̂4|)1−j .

The statement of the lemma follows on recalling (6.33) and the fact that c = rv, with

r = q/Q.

6.3.4 Stationary Phase

The following stationary phase result will prove vital in our more demanding analysis

of Iq(c) in the next section.

Lemma 6.3.4. Let φ be a Schwartz function on Rn and let N ≥ 0. Then,∫
Rn
eiλ‖x‖

2
2φ(x)dx =λ−

n
2

N∑
j=0

ajλ
−j +On,N

(
|λ|−

n
2
−N−1‖φ‖2N+3+n,1

)
,

where ‖ · ‖k,1 denotes the Sobolev norm on L1(Rn) of order k and

aj = (iπ)
n
2
ij

j!

(
∆jRnφ

)
(0).
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Proof. We follow the argument in Stein [Ste93, §VIII.5.1]. By using the Fourier transform,

we can write the integral as(
iπ

λ

)n
2
∫

Rn
e−iπ

2‖ξ‖22/λF [φ](ξ)dξ. (6.38)

Next, we split off the first N terms in a Taylor expansion around 0, finding that

e−iπ
2‖ξ‖22/λ =

N∑
j=0

(−iπ2‖ξ‖22/λ)j

j!
+RN (ξ).

The main term now comes from integration by parts and Fourier inversion. We are left

to deal with the integral involving RN (ξ). We have

RN (ξ)�N

(
‖ξ‖22
|λ|

)N+1

, (6.39)

which follows from Taylor expansion when ‖ξ‖22 ≤ |λ| and trivially otherwise. Moreover,

F [φ](ξ) = OA

(
‖ξ‖−A2 ‖φ‖A,1

)
, (6.40)

for any A ≥ 0. We split up the remaining integral into two parts: ‖ξ‖2 ≤ 1 and ‖ξ‖2 > 1.

For the first part, we use (6.39) and (6.40) with A = 2N + 1+ n. Recalling the additional

factor λ−
n
2 from (6.38), we get an error term of size

On,N

(
|λ|−

n
2
−N−1‖φ‖2N+1+n,1

)
.

For the second part, we use (6.39) and (6.40), but this time with A = 2N + 3 + n.

This leads to the same overall error term, but with the factor ‖φ‖2N+1+n,1 replaced by

‖φ‖2N+3+n,1.

6.3.5 Hard Estimates

Having shown how to truncate the sum over c in (6.29), we now return to (6.33) for

c ∈ C and see what more can be said about the integral I∗r (v) in (6.34), with r = q/Q

and v = r−1c. Our result relies on an asymptotic expansion of I∗r (v), but the form it

takes depends on the size of ε|v̂4|.

It will be convenient to set a = (v̂1, v̂2, v̂3), in what follows. To begin with, we make

the change of variables x =
∑4

i=1 uiei in (6.34). This leads to the expression

I∗r (v) =

∫
R4

w0(‖u‖2)w0(2u4/ε)h
(
r,

2u4
ε

+ ‖u‖22
)
e(−u · v̂) du,
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where v̂i = v · ei for 1 ≤ i ≤ 4. We now write y = 2u4/ε+ ‖u‖22, under which we have

u4 =
1

ε

(
−1+

√
1+ ε2{y− u21 − u22 − u23}

)
. (6.41)

Thus,

I∗r (v) =

∫
R

h(r, y)e

(
−εv̂4y

2

)
T (y)dy, (6.42)

where

T (y) = e

(
εv̂4y

2

)∫
R3

w0(‖u‖2)w0(2u4/ε)e(−u · v̂) du1du2du3
2/ε+ 2u4

, (6.43)

and u4 is given in terms of y,u1,u2,u3 by (6.41). In particular, on writing x = (u1,u2,u3),

we have w0(‖u‖2)w0(2u4/ε) = ψy(x), where ψy : R3 → R≥0 is the weight function

ψy(x) = w0

(
2ε−2(−1+

√
1+ ε2{y− ‖x‖22})

)
×w0

(√
‖x‖22 + ε−2(1−

√
1+ ε2{y− ‖x‖22})2

)
.

(6.44)

We note, furthermore, that the integral in T (y) is supported on [−1, 1]3. Moreover, we

have
2u4
ε

=
2

ε2

(
−1+

√
1+ ε2{y− ‖x‖22}

)
= y− ‖x‖22 +O(ε2), (6.45)

for any x such that ψy(x) 6= 0. In particular, it follows that

1

2/ε+ 2u4
=
ε

2

(
1+O(ε2)

)
(6.46)

in (6.43).

Since e(z) = 1+O(z), we invoke (6.41) and (6.45) to deduce that

e(−u · v̂) = e

(
−εv̂4y

2

)
e

(
εv̂4
2
‖x‖22 − a ·x

)(
1+O(|εv̂4|ε2)

)
, (6.47)

where we recall that a = (v̂1, v̂2, v̂3). Thus, it follows from (6.46) that

T (y) =
ε

2

(
1+O(ε2 + |εv̂4|ε2)

)
I(y), (6.48)

where

I(y) =

∫
R3

ψy(x)e

(
εv̂4
2
‖x‖22 − a ·x

)
dx. (6.49)

In what follows, it will be useful to record the estimate∫
R

∣∣∣∣rky`∂kh(r, y)∂rk

∣∣∣∣ dy �` r
`, (6.50)

for any ` ≥ 0 and k ∈ {0, 1}. This is a straightforward consequence of Lemma 5.2.3. The

stage is now set to prove the following preliminary estimate for I∗r (v) and its partial

derivative with respect to r.
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Lemma 6.3.5. Let k ∈ {0, 1}. Then,

r2k
∂kI∗r (v)

∂rk
� ε(1+ ε3|v̂4|)

max{1, (ε|v̂4|)}
3
2

N δ.

Proof. Suppose first that k = 0. An application of [HBP17, Lemmata 3.1 and 3.2] shows

that

I(y)� 1

max{1, (ε|v̂4|)}
3
2

,

since ‖F [ψy]‖1 � 1. The desired bound now follows on substituting this into (6.42) and

(6.48), before using (6.50) with k = ` = 0 to carry out the integration over y.

Suppose next that k = 1. Then, in view of (6.42), we have

r2
∂I∗r (v)

∂r
=

∫
R

r2
∂h(r, y)

∂r
e

(
−εv̂4y

2

)
T (y)dy

+

∫
R

h(r, y)e

(
−εv̂4y

2

)
T̃ (y)dy,

(6.51)

where

T̃ (y) = e

(
εv̂4y

2

)∫
R3

w0(‖u‖2)w0(2u4/ε)r2
∂

∂r
e(−u · v̂) du1du2du3

2/ε+ 2u4

= e

(
εv̂4y

2

)∫
R3

(2πiu · ĉ)w0(‖u‖2)w0(2u4/ε)e(−u · v̂)du1du2du3
2/ε+ 2u4

.

The contribution from the first integral in (6.51) is satisfactory, since r � 1, on reapplying

our argument for k = 0 and using (6.50) with k = 1 and ` = 0. Turning to the second

integral in (6.51), we recall (6.46) and (6.47). These allow us to write

T̃ (y) = επi
(
1+O(ε2 + |εv̂4|ε2)

)
Ĩ(y),

where

Ĩ(y) =

∫
R3

ψ̃y(x)e

(
εv̂4
2
‖x‖22 − a ·x

)
dx

and

ψ̃y(x) =

(
ra ·x+

ĉ4
ε

(
−1+

√
1+ ε2{y− ‖x‖22}

))
ψy(x).

Here, the definition of C implies that r|a| = max{|ĉ1|, |ĉ2|, |ĉ3|} ≤ N δ and ε|ĉ4| ≤ N δ.

Thus, the L1-norm of the Fourier transform of ψ̃y is O(N δ). Once combined with (6.50)

with k = ` = 0, we apply [HBP17, Lemmata 3.1 and 3.2] to estimate Ĩ(y), which con-

cludes our treatment of the case k = 1.

The case k = 0 of Lemma 6.3.5 is already implicit in Sardari’s work (see [Sar15a,

Lemma 6.2]). We shall also need the case k = 1, but it turns out that it is only effective
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when r is essentially of size 1. For general r, we require a pair of asymptotic expansions

for I∗r (v), that are relevant for small and large values of ε|v̂4|, respectively. This is the

objective of the following pair of results.

Lemma 6.3.6. Let A ≥ 0. Then,

I∗r (v) =
εI(0)

2
+OA

(
ε3(1+ ε|v̂4|) + ε(1+ ε|v̂4|)ArA

)
.

Proof. Our first approach is founded on the Taylor expansion

e

(
−εv̂4y

2

)
=

A−1∑
j=0

(−πiεv̂4y)j

j!
+RA(y),

where RA(y) �A (ε|v̂4y|)A. Since I(y) � 1, we conclude from (6.42), (6.48) and (6.50)

that

I∗r (v) =
ε

2

A−1∑
j=0

(−πiεv̂4)j

j!

∫
R

yjh(r, y)I(y)dy

+OA
(
ε3(1+ ε|v̂4|) + ε(ε|v̂4|)ArA

)
.

Next, we claim that

∫
R

yjh(r, y)I(y)dy = OA(r
A) +


I(0) if j = 0,

0 if j > 0.

(6.52)

To see this, note that yjI(y) has uniformly bounded Sobolev norms (in terms of c and ε)

and apply Lemma 5.2.2. The statement of the lemma is now obvious.

Lemma 6.3.7. Assume that ε|v̂4| > 1. For each j ≥ 0, we define

ϕj(y) = ∆j
R3ψy

(
(εv̂4)

−1a
)
= ∆j

R3ψy
(
(εĉ4)

−1(ĉ1, ĉ2, ĉ3)
)
,

where ψy is given by (6.44). Let A ≥ 0. Then, there exist constants kj that depend only on j

such that

I∗r (v) =
εδ(ĉ)

(εv̂4)
3
2

e

(
−‖a‖

2
2

2εv̂4

) A∑
j=0

kj
(εv̂4)j

∫
R

h(r, y)e

(
−εv̂4y

2

)
ϕj(y)dy

+OA

(
ε3

|εv̂4|
1
2

+
ε

|εv̂4|
5
2
+A

)
,

where

δ(ĉ) =


1 if ε|ĉ4| � ‖(ĉ1, ĉ2, ĉ3)‖2,

0 otherwise.
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Proof. It will be convenient to set λ = εv̂4 in the proof of this result, recalling our hypo-

thesis that |λ| > 1. Our starting point is the expression for T (y) in (6.48), in which I(y)

is given by (6.49). By completing the square, we may write

T (y) =
ε

2

(
1+O(|λ|ε2)

)
e

(
−‖a‖

2
2

2λ

)
I∗(y),

since |λ| > 1, where

I∗(y) =

∫
R3

ψy

(
x+

a

λ

)
e

(
λ

2
‖x‖22

)
dx.

If ‖a‖2 � ε|v̂4|, then it follows from [HB96, Lemma 10] that T (y) �A ε|λ|−A, for

any A ≥ 0. Alternatively, if ‖a‖2 � ε|v̂4|, which is equivalent to δ(ĉ) = 1, then all the

hypotheses of Lemma 6.3.4 are met. Thus, for any A ≥ 0, there exist constants kj that

depend only on j such that

I∗(y) =
1

λ
3
2

A∑
j=0

kj∆
j
R3ψy(λ

−1a)

λj
+OA

(
1

|λ|
5
2
+A

)
.

Hence, we conclude from (6.48) that

T (y) =
εδ(ĉ)

2λ
3
2

e

(
−‖a‖

2
2

2λ

) A∑
j=0

kj∆
j
R3ψy(λ

−1a)

λj
+OA

(
ε3

|λ|
1
2

+
ε

|λ|
5
2
+A

)
.

We now wish to substitute this into our expression (6.42) for I∗r (v). In order to control

the contribution from the error term, we apply (6.50) with ` = 0. We therefore arrive at

the statement of the lemma on redefining kj to be kj/2.

It remains to consider the integral

Jj,q(c) =

∫
R

h (r, y) e

(
−εv̂4y

2

)
ϕj(y)dy

=

∫
R

h

(
q

Q
, y

)
e

(
−εĉ4yQ

2q

)
ϕj(y)dy,

(6.53)

for j ≥ 0. Recollecting (6.44), all we shall need to know about ϕj is that it is a smooth

compactly supported function with bounded derivatives, and that it does not depend on

q. (Note that we may assume that |(ĉ1, ĉ2, ĉ3)| � ε|ĉ4| in what follows, since otherwise

δ(ĉ) = 0.)

Lemma 6.3.8. Let c ∈ C and k ∈ {0, 1}. Then,

qk
∂kJj,q,(c)

∂qk
�j N

δ.
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Proof. When k = 0, the result follows immediately from (6.50). Suppose next that k = 1.

Then, (6.53) implies that

∂Jj,q(c)

∂q
=

1

Q

∫
R

∂h (r, y)

∂r
e

(
−εĉ4yQ

2q

)
ϕj(y)dy

+

∫
R

πiεĉ4yQ

q2
h (r, y) e

(
−εĉ4yQ

2q

)
ϕj(y)dy

= J1 + J2,

say. It follows from (6.50) that J1 �j Q
−1r−1 = q−1, which is satisfactory. Next, a further

application of (6.50) yields

J2 �j
ε|ĉ4|Q
q2

∫
R

|yh (r, y)| dy �j
ε|ĉ4|Q
q2

· r ≤ N δ

q
,

for c ∈ C.

6.3.6 Putting everything together

It is now time to return to (6.29), in order to conclude the proof of Theorem 6.3.1.

6.3.7 The Main Term

We begin by dealing with the main contribution, which comes from the term c = 0.

Denoting this by M(w), we see that

M(w) =
1

Q2

∑
q�Q

q−4Sq(0)Iq(0) +OA(Q
−A), (6.54)

for any A > 0.

In view of (6.44), ψ0(x) is equal to

w0

(
2ε−2(−1+

√
1− ε2‖x‖22)

)
w0

(√
‖x‖22 + ε−2(1−

√
1− ε2‖x‖22)2

)
.

As in (6.45), when ψ0(x) 6= 0 we must have

2ε−2
(
−1+

√
1− ε2‖x‖22

)
= −‖x‖22 +O(ε2),

‖x‖22 + ε−2(1−
√

1− ε2‖x‖22)
2 = ‖x‖22 +O(ε2).

In particular, it is clear that

σ∞ =

∫
R3

ψ0(x)dx� 1, (6.55)

for an absolute implied constant. We now establish the following result.
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Lemma 6.3.9. We have

Iq(0) =
1
2ε

5N2σ∞
(
1+O(ε2) +OA

(
(q/Q)A

))
,

for any A > 0, where σ∞ is given by (6.55).

Proof. Returning to (6.33), it follows from (6.42) and (6.43) that

Iq(0) = ε4N2

∫
R

h(r, y)K(y)dy,

where

K(y) =

∫
R3

w0(‖u‖2)w0(2u4/ε)
du1du2du3
2/ε+ 2u4

,

and u4 is given in terms of y,u1,u2,u3 by (6.41). By using (6.46), we may write

K(y) =
ε

2

(
1+O(ε2)

)
K∗(y), with K∗(y) =

∫
R3

ψy(x)dx.

From (6.55), we see that K∗(0) = σ∞. This together with Lemma 5.2.2 yields∫
R

h(r, y)K∗(y)dy = σ∞ +OA(r
A),

for any A > 0, since the Sobolev norms are uniformly bounded again (in terms of ε). We

therefore deduce that

Iq(0) =
1
2ε

5N2σ∞
(
1+O(ε2) +OA(r

A)
)
,

which completes the proof of the lemma.

Now, it is clear from Section 6.3.1 that q−4|Sq(c)| ≤ 4q−2|S(m,n; q)|, for any vector c ∈

Z4, where (m,n) is (N , ‖ĉ‖22/4), (N/2, ‖ĉ‖22/2) or (N/4, ‖ĉ‖22) depending on whether

4 | q, q ≡ 2 mod 4 or 2 - q, respectively. Hence, it follows from (6.31), together with the

standard estimate for the divisor function, that∑
t/2<q≤t

q−4|Sq(c)| �
∑

t/2<q≤t

q−2|S(m,n; q)| � to(1)
∑

t/2<q≤t

√
(q,N)

q3/2

� t−1/2+o(1)No(1),

(6.56)

for any t > 1. Returning to (6.54), we may now conclude from Lemma 6.3.9 and (6.56)

with c = 0, that the contribution to M(w) from q ≤ Q1−δ is

=
1

Q2

∑
q≤Q1−δ

q−4Sq(0)Iq(0) +OA(Q
−A)

=
ε5N2

2Q2
σ∞S(Q1−δ) +O

(
ε7N2+δ/2

Q2

)
+OA(Q

−A),
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where

S(t) =
∑
q≤t

q−4Sq(0).

This sum is absolutely convergent and satisfies S(t) = S+O(t−1/2+o(1)No(1)), by (6.56).

Here, in the usual way, S is the Hardy–Littlewood product of local densities recorded

in (6.28).

Next, on invoking (6.56), once more, the contribution from q > Q1−δ is

�A
ε5N2

Q2

∑
q>Q1−δ

q−4|Sq(0)|+Q−A � ε5N2+δ/2Qδ/2

Q5/2 .

Hence, we have established the following result, on recalling that Q = ε
√
N , which

shows that the main term is satisfactory for Theorem 6.3.1.

Lemma 6.3.10. We have

M(w) =
ε3Nσ∞S

2
+O

(
ε5N1+o(1) + ε

5
2N

3
4
+o(1)

)
.

6.3.8 The Error Term

It remains to analyse the contribution E(w), say, to Σ(w) from vectors c 6= 0 in (6.29).

According to our work in Section 6.3.1 the value of Sq(c) differs according to the residue

class of q modulo 4. We have

E(w) =
∑

i mod 4

Ei(w),

where Ei(w) denotes the contribution from q ≡ i mod 4. Recall the definition of C from

after the statement of Lemma 6.3.3. In order to unify our treatment of the four cases, we

write C1 = C2 = C and we denote by C2 (resp. C4) the set of c ∈ C for which 2 - c1 . . . c4
(resp. 2 | c). It will also be convenient to set

(m1,n1) = (m3,n3) = (N/4, ‖c‖22),

(m2,n2) = (N/2, ‖c‖22/2), (m4,n4) = (N , ‖c‖22/4).

In particular, mini = N‖ĉ‖22/4 > 0 for 1 ≤ i ≤ 4, since ‖c‖2 = ‖ĉ‖2.
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Let 1� R� Q. We denote by Ei(w,R) the overall contribution to Ei(w) from q ∼ R.

(We write q ∼ R to denote q ∈ (R/2,R].) On recalling (6.33), it follows from our work

so far that

Ei(w,R)�
1

Q2

∑
c∈Ci
c6=0

∣∣∣∣∣∣∣∣
∑
q∼R

q≡i mod 4

q−2S(mi,ni; q)Iq(c)

∣∣∣∣∣∣∣∣
� ε4N2

Q2

∑
c∈Ci
c6=0

∣∣∣∣∣∣∣∣
∑
q∼R

q≡i mod 4

q−2S(mi,ni; q)er(−ε−1c · ξ)I∗r (v)

∣∣∣∣∣∣∣∣ .
(6.57)

Contribution from large q

Suppose first that R ≥ Q1−η, for some small η > 0. (The choice η = 2δ is satisfactory.)

We have

er(−ε−1c · ξ) = e

(
2
√
mini
q

α

)
,

with

|α| = ε−1|ĉ4| ·
Q

q
· q

2
√
mini

=
|ĉ4|
‖ĉ‖2

≤ 1.

It now follows from Conjecture 4.0.2 that

L(t) =
∑
q≤t

q≡i mod 4

S(mi,ni; q)

q
e

(
2
√
mini
q

α

)
� (tN)o(1). (6.58)

Applying partial summation, based on Lemma 6.3.5, we deduce that

Ei(w,R)�
ε5N2+δ+o(1)

Q3
· Q

2

R2
·
∑
c∈Ci
c6=0

1

max{1, ε|ĉ4|Q/R}
3
2

� ε5N2+δ+o(1)

QR2
· ε
−1R

Q

=
ε4N2+δ+o(1)

Q2R
.

Since R ≥ Q1−η, we deduce that

Ei(w,R)�
ε4N2+δ+o(1)Qη

Q3
≤ εN

1
2
+δ+o(1)+η.

This is satisfactory for Theorem 6.3.1, provided that η and δ are small enough.
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Contribution from small q and small ε|v̂4|

For the rest of the proof we suppose that R < Q1−η. Let us put

b = (ĉ1, ĉ2, ĉ3),

so that a = r−1b in Lemmata 6.3.6 and 6.3.7. Let E(small)
i (w,R) denote the contribution

to Ei(w,R) from c ∈ Ci such that

ε|ĉ4| ≤
R1+δ

Q
. (6.59)

In this case, it is advantageous to apply Lemma 6.3.6 to evaluate I∗r (v). To begin with,

we consider the effect of substituting the main term from Lemma 6.3.6. Noting that

(εv̂4)−1a = (εĉ4)−1b does not depend on q, we deduce from (6.49) that the only depend-

ence on q in I(y) comes through the term

e

(
εv̂4
2
‖x‖22 − a ·x

)
= er

(
εĉ4
2
‖x‖22 − b ·x

)
,

in the integrand. Thus, the main term in Lemma 6.3.6 makes the overall contribution

� ε5N2

Q2

∑
c∈Ci
c6=0

(6.59) holds

∣∣∣∣∣∣∣∣
∑
q∼R

q≡i mod 4

S(mi,ni; q)

q2
er(−ε−1c · ξ)I(0)

∣∣∣∣∣∣∣∣ (6.60)

to E(small)
i (w,R), where we recall from (6.49) that

I(0) =

∫
R3

ψ0(x)er

(
εĉ4
2
‖x‖22 − b ·x

)
dx.

If c 6= 0 and |ĉ4| ≤ 1
100 then

‖b‖22 = ‖ĉ‖22 − ĉ24 = ‖c‖22 − ĉ24 � 1.

It therefore follows from [HBP17, Lemmata 3.1 and 3.2] that

I(0)�A

(
q

‖b‖2Q

)A
�A Q

−ηA,

since q ≤ Q1−η in this case. The overall contribution to (6.60) from vectors c such that

|ĉ4| ≤ 1
100 is therefore seen to be satisfactory.

On interchanging the sum and the integral, we are left with the contribution

� ε5N2

Q2

∑
c∈Ci
|ĉ4|> 1

100
(6.59) holds

∫
[−1,1]3

|Mi(x)|dx, (6.61)
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where

Mi(x) =
∑
q∼R

q≡i mod 4

S(mi,ni; q)

q2
er(−ε−1c · ξ)er

(
εĉ4
2
‖x‖22 − b ·x

)
.

But

er(−ε−1c · ξ)er
(
εĉ4
2
‖x‖22 − b ·x

)
= e

(
2
√
mini
q

α

)
,

with

α =

(
−ε−1ĉ4 +

εĉ4‖x‖22
2

− b ·x
)
· Q
q
· q

2
√
mini

= − ĉ4
‖ĉ‖2

+
ε2ĉ4‖x‖22
2‖ĉ‖2

− εb ·x
‖ĉ‖2

.

But the inequality max{‖b‖2, |ĉ4|} ≤ ‖ĉ‖2, implies that |α| ≤ 1+O(ε), since x ∈ [−1, 1]3.

Thus, it follows from combining partial summation with Conjecture 4.0.2 that Mi(x)�δ

R−1N δ. (Recall that ε−1 ≤
√
N and R ≤ Q1−η ≤ Q.) Returning to (6.61), we conclude

that the overall contribution to E(small)
i (w,R) from the main term in Lemma 6.3.6 is

�δ
ε5N2+δ

RQ2
#
{
c ∈ Ci : |ĉ4| > 1

100 and (6.59) holds
}
�δ

ε4N2+4δRδ

Q3

�δ εN
1
2
+5δ.

This is satisfactory for Theorem 6.3.1.

It remains to study the effect of substituting the error term from Lemma 6.3.6 into

(6.57). Since r ≤ R/Q ≤ Q−η and ε|v̂4| = r−1ε|ĉ4| � Rδ, by (6.59), we see that the error

term is

�A ε
3(1+ ε|v̂4|) + ε(1+ ε|v̂4|)ArA �A ε

3Rδ + εRδAQ−ηA

≤ ε3Rδ + εQA(δ−η).

On ensuring that δ < η, we see that the second term is an arbitrary negative power of Q

and so makes a satisfactory overall contribution to E
(small)
i (w,R). In view of (6.56), the

contribution from the term ε3N δ is found to be

�δ
ε7N2+δ

Q2R
1
2

·#Ci �δ
ε7N2+δ

Q2
· ε−1N4δ =

ε6N2+5δ

Q2
, (6.62)

since R� 1. The right-hand side is ε4N1+5δ, which is also satisfactory for Theorem 6.3.1,

on redefining δ.
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6.3 a circle-method approach

Contribution from small q and large ε|v̂4|

It remains to consider the case R < Q1−η and

ε|ĉ4| >
R1+δ

Q
. (6.63)

Let us write E
(big)
i (w,R) for the overall contribution to Ei(w,R) from this final case.

Our main tool is now Lemma 6.3.7. Let A ≥ 0. We begin by considering the effect of

substituting the main term from this result into (6.57). This yields the contribution

� ε5N2

Q2

∑
c∈Ci

(6.63) holds

δ(ĉ)
A∑
j=0

|kj |
(ε|ĉ4|Q)

3
2
+j
|Mi,j |, (6.64)

where if Jj,q(c) is given by (6.53), then

Mi,j =
∑
q∼R

q≡i mod 4

S(mi,ni; q)

q
er(−ε−1c · ξ)er

(
−‖b‖

2
2

2εĉ4

)
q

1
2
+jJj,q(c).

Our plan is to use partial summation to remove the factor q
1
2
+jJj,q(c).

First, as before, we note that

er(−ε−1c · ξ)er
(
−‖b‖

2
2

2εĉ4

)
= e

(
2
√
mini
q

α

)
,

where

α =

(
−ε−1ĉ4 −

‖b‖22
2εĉ4

)
· Q
q
· q

2
√
mini

= −
(

ĉ4
‖ĉ‖2

+
‖b‖22

2ĉ4‖ĉ‖2

)
.

We have |α| ≤ 1+O(ε2), since ‖b‖2 � ε|ĉ4| when δ(ĉ) 6= 0. Applying partial summation,

based on (6.58) and Lemma 6.3.8, we deduce that

Mi,j = Oj,δ(R
1
2
+jN3δ).

Returning to (6.64), we conclude that the overall contribution to E
(big)
i (w,R) from the

main term in Lemma 6.3.7 is

�δ,A
ε5N2+3δ

Q2

A∑
j=0

∑
c∈Ci

(6.63) holds

R
1
2
+j

(ε|ĉ4|Q)
3
2
+j
�δ,A

ε5N2+3δ

Q2
· N

3δ

εQ
= εN

1
2
+6δ.

This is satisfactory for Theorem 6.3.1, on redefining δ.
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6.4 discussion

We must now consider the effect of substituting the error term

�A
ε3

|εv̂4|
1
2

+
ε

|εv̂4|
5
2
+A

from Lemma 6.3.7 into (6.57). Since q ∼ R, it follows from (6.63) that ε|v̂4| � Rδ. The first

term is therefore O(ε3), which makes a satisfactory overall contribution by (6.62). On the

other hand, on invoking once more the argument in (6.56), the second term makes the

overall contribution

�A
ε5N2

Q2

∑
c∈Ci

(6.63) holds

∑
q∼R

q−2|S(mi,ni; q)|
|εv̂4|

5
2
+A

�A,δ
ε5N2+δ

R
1
2Q2

(
R

εQ

) 5
2
+A ∑

c∈Ci
(6.63) holds

1

|ĉ4|
5
2
+A

�A,δ
ε4N2+4δR

1
2
−Aδ

Q3
.

This is Oδ(εN
1
2
+4δ) on assuming that A is is chosen so that Aδ > 1

2 . This is also satisfact-

ory for Theorem 6.3.1, which thereby completes its proof.

6.4 discussion

Regarding the circle-method approach, it is rather unfortunate that the unconditional

result on the twisted Linnik–Selberg Conjecture 4.0.1 is insufficient to show

K(S3,Z, 8N+ 4) < 2. The reason for this is that the product of the entries in the Kloost-

erman sum N‖ĉ‖22/4 is rather large. In fact so large, that the |mn|
1
6 -term in Theorem

4.0.1 is by far the dominant term. This term stems from the harder Selberg range, pre-

cisely from the transition range of the J-Bessel function, for which it is hard to get

further cancellation. One way to get around this is by working with the smooth cut-off

already implicit in the circle-method approach. In this case, one might require higher

derivatives to deal with the Hankel transforms, which one may derive since the uniform

expansions used behave nicely under derivatives. One might imagine using the Laplace

or Mellin transform to treat the Hankel transforms. This leads to hypergeometric func-

tions evaluated at points close to the radius of convergence, which may generate further

problems.

Alternatively, one may think of a way to adopt the automorphic approach to generate

sums of Kloosterman sum to which one may apply the Kuznetsov trace formula. This
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6.4 discussion

seems more natural, since the automorphic approach shows that there should be no

Maass spectrum. One way to do this is by using the Petersson trace formula. This would

be inefficient since we are only interested in the size of a Fourier coefficient of a single

cusp form and not the sum of the squares over an orthonormal basis. Nevertheless, due

to their relation to the Kloosterman sums it seems that the Poincaré series must be in-

volved in such an argument. One may think of the inner product 〈Gn,P1,n+2
∞,N 〉which one

may relate to the value of L(Gn×P1,n+2
∞,N , 0). One must be careful though as to not argue

circularly. A possible approach that has transpired is to apply the Hardy–Ramanujan–

Rademacher circle method, that gives rise to an exact formula for the Fourier coefficient,

which resembles a formal Dirichlet sum corresponding to L(Gn ×P1,n+2
∞,N , 0). This ven-

ture will be part of future research.
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A
A P P E N D I X : S P E C I A L F U N C T I O N S A N D T R A N S F O R M S

a.1 whittaker function

The Whittaker function as defined as follows [WW96, Section 16.1.2]:

Wk,m(z) =−
1

2πi
Γ
(
k+

1

2
−m

)
e−

1
2
zzk
∫ (0+)

∞
(−t)−k−

1
2
+m

(
1+

t

z

)k− 1
2
+m

e−tdt

=
e−

1
2
zzk

Γ( 12 − k+m)

∫ ∞
0

t−k−
1
2
+m

(
1+

t

z

)k− 1
2
+m

e−tdt.

(A.1)

In the first formula, the contour is chosen such that the point −z lies outside and the

formula is valid for | arg(z)| < π, k,m ∈ C with m− k + 1
2 /∈ N. The second formula is

valid for | arg(z)| < π, k,m ∈ C with Re(m− k+ 1
2 ) > 0.

The Whittaker function satisfies the following recursion formula [DLMF, Eq. 13.15.11]

Wk+1,m(z) + (2k− z)Wk,m +
(
(k− 1

2 )
2 −m2

)
Wk−1,m(z) = 0, (A.2)

and the following relation for its derivative [WW96, Ch. 16 Ex. 3],[DLMF, Eq. 13.15.26]

zW ′k,m(z) = ( z2 − k)Wk,m(z)−Wk+1,m(z). (A.3)

The Whittaker function has an elementary expression in the following special case

Wk,±(k− 1
2
)(z) = e−

1
2
zzk. (A.4)

This can be easily seen from (A.1) using the residue theorem and is also recorded in

[DLMF, Eq. 13.18.2]. We shall further require the following integral involving the Whit-

taker function [EMOT81, Section 20.3, Eq. (30)], [DLMF, Eq. 13.23.4]∫ ∞
0

e−
z
2Wκ

2
,it(z)z

s−1dz =
Γ(s+ 1

2 − it)Γ(s+
1
2 + it)

Γ(s+ 1− κ
2 )

, ∀Re(s) > |Re(it)| − 1

2
. (A.5)
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A.2 bessel functions

a.2 bessel functions

For an extensive treatment of Bessel functions we refer to [Wat44]. Here, we recollect the

basic definitions, some useful integral and series representations, and some asymptotic

behaviours. The Bessel function of the first kind is given by

Jv(z) =
( 12z)

k

2πi

∫ (0+)

−∞
t−v exp

(
t− z2

4t

)
dt

t
. (A.6)

The Bessel function of the second kind is given by

Yv(z) =
Jv(z) cos(vπ)− J−v(z)

sin(vπ)
, (A.7)

where for v ∈ Z this is to be regarded as a limit. The modified Bessel function of the

first kind is given by

Iv(z) =


e−

1
2
πivJv(ze

πi
2 ), −π < arg z ≤ π

2 ,

e
3
2
πivJv(ze

− 3
2
πi), π

2 < arg z ≤ π.
(A.8)

This defintion becomes more natural when comparing the series representations (A.10)

and (A.14). The modified Bessel function of the second kind is given by

Kv(z) =
π

2

I−v(z)− Iv(z)
sin(vπ)

, (A.9)

where for v ∈ Z this is to be regarded as a limit.

We shall require some integral and series representations of Bessel functions:

Jv(z) =
∞∑
m=0

(−1)m
(
z
2

)v+2m

m!Γ(v+m+ 1)
, ∀v, z ∈ C, (A.10)

Jv(z) =
1

π

∫ π

0
cos(vθ− z sin(θ))dθ− sin(vπ)

π

∫ ∞
0

e−vθ−z sinh(θ)dθ,

∀v, z ∈ C, Re(z) > 0, (A.11)

Jv(x) =
2

π

∫ ∞
0

sin
(
x cosh(ξ)− π

2 v
)
cosh(vξ)dξ,

∀v ∈ C,−1 < Re(v) < 1,∀x ∈ R+, (A.12)
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A.2 bessel functions

Yv(x) = −
2
(
x
2

)−v
√
πΓ( 12 − v)

∫ ∞
1

cos(xt)

(t2 − 1)v+
1
2

dt,

∀x ∈ R+, ∀v ∈ C,−1

2
< Re(v) <

1

2
, (A.13)

Iv(z) =
∞∑
m=0

(
z
2

)v+2m

m!Γ(v+m+ 1)
, ∀v, z ∈ C, (A.14)

Kv(az) =
1

2
av
∫ ∞
0

exp

(
−1

2
z

(
t+

a2

t

))
dt

tv+1
,

∀a, v, z ∈ C, Re(z) > 0,Re(a2z) > 0, (A.15)

Kv(z) =
Γ( 12 + v)(2z)v

√
π

∫ ∞
0

cos(t)

(t2 + z2)
1
2
+v
dt,

∀z, v ∈ C, Re(v) > −1
2 , Re(z) > 0. (A.16)

Kv(x) =
1

2πi

∫
(σ)

2s−1x−sΓ
(
s+ v

2

)
Γ
(
s− v
2

)
ds,

∀v ∈ C,∀x,σ ∈ R+,σ > |Re(v)|. (A.17)

All of the above can be found in [Wat44] with the exception of the last equation, which

follows from Mellin inversion and the Mellin transform of Kv(x), which can be found

in [Iwa02, Appendix B].

We further also require some asymptotic expansions of Bessel functions, which can be

found in [Iwa02, Appendix B]:

Jv(x) =

√
2

πx
cos
(
x− π

2 v−
π
4

)
+O

(
1+ |v|2

x
3
2

)
, ∀v ∈ C,∀x ∈ R+, (A.18)

Yv(x) =

√
2

πx
sin
(
x− π

2 v−
π
4

)
+O

(
1+ |v|2

x
3
2

)
, ∀v ∈ C,∀x ∈ R+, (A.19)
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A.3 special integrals

a.3 special integrals

∫ ∞
−∞

(1− iu)−s1(1+ iu)−s2du = π22−s1−s2
Γ(s1 + s2 − 1)

Γ(s1)Γ(s2)
,

∀s1, s2 ∈ C, Re(s1), Re(s2) > 0,Re(s1 + s2) > 1. (A.20)

See [GR07, page 909 eq. 8.381.1.].

a.4 transforms

Proposition A.4.1 (Fourier Transform). Let φ ∈ C2(Rn,R) with φ,φ′,φ′′ ∈ L1(Rn). Then,

we have

φ(x) =

∫
Rn
F [φ](ξ)e(x · ξ)dξ,

where

F [φ](ξ) =
∫

Rn
φ(x)e(−x · ξ)dx

is the Fourier transform.

Proof. See [IK04, Section 4.A].

Proposition A.4.2 (Mellin Transform). Let φ ∈ C2(R+,R) with

φ(x)xs−1,φ′(x)xs,φ′′(x)xs+1 ∈ L1(R+) for α < Re(s) < β.

Then, we have

φ(x) =
1

2πi

∫
(σ)
M[φ](s)x−sds,

for any σ ∈]α,β[, where

M[φ](s) =

∫ ∞
0

φ(x)xs−1dx, ∀s ∈ C : Re(s) ∈]α,β[,

is the Mellin transform.

Proof. See [IK04, Section 4.A].

Proposition A.4.3 (Kontorovitch–Lebedev Inversion). Let φ ∈ C2(R+
0 ,R) with φ(0) = 0

and φ(x),φ′(x),φ′′(x)� (x+ 1)−2+δ for some δ > 0. Then, we have

φ(x) =
2

π

∫ ∞
−∞

K2it(x)φ̌(t) sinh(πt)tdt,

174



A.4 transforms

where

φ̌(t) =
4

π
cosh(πt)

∫ ∞
0

K2it(x)φ(x)
dx

x
.

Proof. See [KL38, KL39] and [Leb72, p. 131].
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